Старая версия сайта доступна по ссылке http://old.miet.ru Перейти

Разработана технология изготовления приборов нитрида галлия на кремниевой подложке диаметром 150 мм

Разработана технология изготовления приборов нитрида галлия на кремниевой подложке диаметром 150 мм

Нитриды галлия постепенно приходят на смену арсениду галлия: они позволяют получать более мощные приборы СВЧ-диапазона, работающие при более высоких температурах. До сегодняшнего дня в нашей стране создавались приборы нитрида галлия на кремнии диаметром менее 100 мм. В лаборатории элементной базы наноэлектроники кафедры «Квантовая физика и наноэлектроника» МИЭТ создали технологию, позволяющую работать с пластинами нитрида галлия на кремниевой подложке диаметром 150 мм. Это достижение миэтовских ученых стало прорывным в области технологий по СВЧ-элементной базе и вошло в программу развития Центра компетенций НТИ «Сенсорика», открытого на базе МИЭТ в прошлом году.

Первые пробы и результат

Физические принципы и формирования приборов нитридной группы были заложены и сформулированы еще нобелевским лауреатом Ж.И. Алферовым в те годы, когда он со своей командой занимался лазерами. Именно на основе его разработок стали изготавливать детали и микросхемы для СВЧ-техники – нитридные гетероструктуры. Однако цена таких микросхем была огромной, потому что материалы подложки (того, на чем они держались) стоили огромных денег. Когда задумались, как их удешевить, решили совместимость технологию, которая используется в мире для распространенных кремниевых подложек с диаметром 500 мм, и СВЧ-технологии с диаметром 50 мм (вот она – разница в цене). Трудозатраты при этом оставались теми же. Однако перейти на больший диаметр не позволяло отсутствие отработанных надежных технологий изготовления. Поэтому стали искать возможности изготовить нитрид галлия на кремнии: сначала они были реализованы за рубежом, а потом и у нас.

Первые отечественные приборы были созданы в МИЭТ в 2012-м году на подложках нитрида галлия на кремнии диаметром 50 мм. Сначала они, конечно, были не очень хорошего качества, но принцип изготовления был применен. А в 2017-м МИЭТ вплотную подошел к тому, чтобы изготавливать нитрид галлия на приборы на подложках кремния диаметром 150 мм. «Мы понимали, что если у нас это получится, то мы будем обладать технологиями мирового уровня, – рассказывает ведущий научный сотрудник МИЭТ, заведующий лабораторией «Элементная база наноэлектроники» кафедры «Квантовая физика и наноэлектроника» Владимир Егоркин. – Фирмы с мировым именем держат в секрете технологии изготовления таких пластин и составы рабочих структур, при том, что бизнес уже давно говорит о мощнейших характеристиках приборов на них».

Действительно, за рубежом есть даже такая услуга для компаний: вам проводят выращивание структуры по вашему заданию, при этом вся ответственность за «дизайн» структуры лежит на заказчике. Ведь чтобы понять и смоделировать такую структуру, нужно быть высококвалифицированным специалистом в области физики полупроводниковых приборов. Ученым МИЭТа удалось смоделировать, рассчитать и изготовить СВЧ приборы на пластинах диаметром 150 мм и создать экспериментальные образцы сверхмощных СВЧ-приборов, которые показали отличные характеристики, сравнимые с зарубежными аналогами.

«Овладев этой технологией, мы получили пробивное напряжение в районе 250 вольт! Сравните, у арсенида галлия, который использовался ранее, напряжение равняется 25-ти вольтам, – говорит Владимир Егоркин. – Такие мощности особенно важны для внедрения в России пятого поколения мобильной связи. Количество подложек для производства СВЧ-приборов для телекоммуникаций можно сократить в два раза! Это, безусловно, существенно отразится на стоимости готовых микросхем».

Сейчас ученые МИЭТ находятся на этапе завершения процесса идеологии, создания алгоритмов и выбирают частотные диапазоны для того чтобы запустить производство микросхем на диаметре 150 мм для отечественных СВЧ-приборов нитрида галлия.

СПРАВКА:

Как выращивается галлий на кремнии?

В первую очередь выращивается активная пленка, которая сама по себе состоит из нескольких слоев, выращенных друг за другом. Ее суммарная толщина колеблется в районе нескольких микрон. Та часть, которая содержит в себе большие вольты, о которых мы говорили выше, сосредоточена как раз в толщине этого тонкопленочного материала. После формирования пленки, на ней создаются рабочие структуры: транзисторы и микросхемы, которые выполняют функции, заложенные геометрией и топологией (травление, нанесение, нейтрализации, нанесения активных зон и т.д.) будущего СВЧ-прибора. Кремний – остается несущей основой, без которой с такими толщинами работать физически невозможно. После этого пленку начинают «утонять» до 100 микрон (исходно толщины кремниевой пластины могут составлять 675, 950 микрон). Чтобы обеспечить возможность подступиться к оставшейся толщине, на нее наклеивается матрица, которая держит всю эту конструкцию, и только после этого идет сошлифовка кремниевой части до 100 микрон. На остатке кремния доводятся все технологические операции контактирования с активными элементами. И только после такой ювелирной работы пластина разделяется на кристаллы, готовые для установки в СВЧ-приборы.

Также вам может быть интересно 8 молодых ученых МИЭТа получат по 500000 руб. в рамках программы «УМНИК»
Приемная комиссия +7 499 734-02-42 abit@miee.ru
Контакты для прессы +7 499 720-87-27 mc@miee.ru