+7 (495) 198-00-00 Горячая линия ситуационного центра Минобрнауки
по вопросам поддержки образовательных организаций высшего образования, а также их сотрудников и обучающихся, по вопросам профилактики распространения COVID-19 перейти на сайт МОН

Институт биомедицинских систем

Директор: д.ф.-м.н., профессор Сергей Васильевич Селищев
Телефон:(499) 720-87-63, Внутренний телефон:29-63
Аудитория:4121

Направления исследований

  • биомедицинские нанотехнологии - исследования и разработка биосовместимых композиционных наноматериалов, в том числе имплантируемых в организм человека;
  • биомедицинская оптика - фотометрические, спектрофотометрические и томографические методы исследования биологических объектов;
  • биотехнические системы поддержки функционирования внутренних органов человека – носимые аппараты вспомогательного кровообращения сердца; гемодиализные аппараты;
  • биомедицинская электроника - электронные приборы для медицинской диагностики и терапии, в том числе для электрической дефибрилляции сердца;
  • биомедицинские компьютерные технологии - компьютерная обработка биомедицинских сигналов и изображений, компьютерное моделирование, нейронные сети;
  • биомедицинская силовая электроника - беспроводные системы энергообеспечения имплантируемых медицинских приборов.

Гранты РФФИ

«Повышение гемосовместимости аппаратов вспомогательного кровообращения с использованием методов физиологического управления» в рамках совместного конкурса РФФИ и Немецкого научно-исследовательского сообщества (Соглашение 19-51-12005/19 от 17.01.2019).

«Исследование влияния рассеяния излучения на реконструкцию пространственного распределения источников излучения с помощью моделирования траекторий частиц методом Монте-Карло» (Соглашение № 19-32-90049/19 от 23.08.2019г.).

«Исследование принципов построения обратной связи, методов обработки информации и поддержки принятия решений при синтезе системы автоматического поддержания концентрации глюкозы в крови» (Соглашение №19-37-90028/19 от 23.08.2019г.).

Гранты Министерства науки и высшего образования Российской Федерации

«Исследование и разработка имплантируемых электронных систем для персонального мониторинга и регуляции состояния системы кровообращения»

(Лаборатория «Имплантируемые электронные системы персонального мониторинга и регуляции состояния системы кровообращения», Соглашение № 075-03-2020-216 от 27.12.2019г.)

«Исследования и разработка 3D-нанокомпозитных биоконструкций для обеспечения жизненного цикла клеточного материала и регенерации биотканей» (Соглашение №14.578.21.0221 от 29 сентября 2016г).

«Исследование и разработка портативного автоматического аппарата для длительной персональной инсулинотерапии пациентов» (Соглашение №14.578.21.0186 от 03 октября 2016г).

«Разработка экспериментального образца модуля непрерывной диагностики ЭКГ для последующего использования в имплантируемых приборах» (Соглашение №14.575.21.0145 от 26.09.2017).

«Разработка трехмерных тканеинженерных конструкций для регенерации клеток и органов сердечно-сосудистой системы» (Соглашение №14.578.21.0234 от 26.09.2017).

«Разработка платформы для диагностики патологий на базе плазмонных биосенсоров и анализа траекторий наночастиц» (Соглашение №14.584.21.0021 от 17.07.2017).

«Разработка методов и средств построения адаптивных систем беспроводного

энергообеспечения персонифицированных имплантируемых медицинских приборов» (Соглашение ГЗ №12.2339.2017/ПЧ от 31.05.2017).

Гранты РНФ

Разработка персонализированной биотехнической системы поддержания кровообращения при единственном желудочке сердца (кровообращение по Фонтану) (Соглашение №18-79-10008 от 02.08.2018).

Исследование проблемы повышения биосовместимости в роторном насосе крови Спутник посредством разработки новой геометрии и антикоагулянтного покрытия нового поколения (Соглашение №20-49-04404 от 07.02.2020).

Основные публикации за 2017-2020 годы:

1. Savelyev, Mikhail & Gerasimenko, Alexander & Podgaetskii, Vitaly & Tereshchenko, Sergey & Selishchev, Sergey & Tolbin, Alexander. (2019). Conjugates of thermally stable phthalocyanine J-type dimers with single-walled carbon nanotubes for enhanced optical limiting applications. Optics & Laser Technology. 117. 272-279. 10.1016/j.optlastec.2019.04.036.

2. Gerasimenko, Alexander & Kitsyuk, E. & Kuksin, Artem & Ryazanov, Roman & Savitskiy, Andrey & Saveliev, Mikhail & Pavlov, Alexander. (2019). Influence of laser structuring and barium nitrate treatment on morphology and electrophysical characteristics of vertically aligned carbon nanotube arrays. Diamond and Related Materials. 96. 10.1016/j.diamond.2019.04.035.

3. Savelyev Mikhail, Gerasimenko Alexander, Vasilevsky Pavel, Fedorova Yulia, Groth Thomas, Ten Galina, Telyshev Dmitry (2020) Spectral analysis combined with nonlinear optical measurement of laser printed biopolymer composites comprising chitosan/SWCNT Analytical Biochemistry, 10.1016/j.ab.2020.113710

4. Savelyev, Mikhail Agafonova, Natalia Vasilevsky, Pavel Ryabkin, Dmitry Telyshev, Dmitry Timashev, Peter Gerasimenko, Alexander (2020) Effects of pulsed and continuous-wave laser radiation on the fabrication of tissue-engineered composite structures Optical Engineering 10.1117/1.OE.59.6.061623

5. Gerasimenko, Alexander Ten, Galina Ryabkin, Dmitry Shcherbakova, Natalia Morozova, Elena Ichkitidze, Levan (2020) The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 10.1016/j.saa.2019.117682

6. Gerasimenko, Alexander Glukhova, Olga Savostyanov, Georgy Podgaetsky, Vitaly (2017) Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures Journal of biomedical optics 10.1117/1.JBO.22.6.065003.

7. Gorbunov, B.B., Vostrikov, V.A., Nesterenko, I.V., Telyshev, D.V. Comparative Modeling of Biphasic Defibrillation Pulses: Quasi-sinusoidal and Trapezoidal with Sloping Rise and Fall (2020) Biomedical Engineering, DOI: 10.1007/s10527-020-09974-6

8. Telyshev, D., Denisov, M., Markov, A., Fresiello, L., Verbelen, T., Selishchev, S. Energetics of blood flow in Fontan circulation under VAD support (2020) Artificial Organs, 44 (1), pp. 50-57. DOI: 10.1111/aor.13564

9. Telyshev, D., Petukhov, D., Selishchev, S. Numerical modeling of continuous-flow left ventricular assist device performance (2019) International Journal of Artificial Organs, 42 (11), pp. 611-620. DOI:10.1177/0391398819852365

10. Slepchenkov, M.M., Gerasimenko, A.Y., Telyshev, D.V., Glukhova, O.E. Protein-polymer matrices with embedded carbon nanotubes for tissue engineering: Regularities of formation and features of interaction with cell membranes (2019) Materials, 12 (19), art. no. 3083, DOI: 10.3390/ma12193083

11. Denisov, M.V., Telyshev, D.V., Selishchev, S.V., Romanova, A.N. Investigation of Hemocompatibility of Rotary Blood Pumps: The Case of the Sputnik Ventricular Assist Device (2019) Biomedical Engineering, 53 (3), pp. 181-184. DOI: 10.1007/s10527-019-09904-1

12. Savostyanov, G.V., Slepchenkov, M.M., Gerasimenko, A.Y., Telyshev, D.V., Glukhova, O.E. Transport gap engineering in zigzag graphene nanoribbons through topological design of deposited oxygen atoms: A new way to control the quantum transport in graphene-like materials (2019) Materials Research Express, 6 (9), art. no. 0950B6, DOI: 10.1088/2053-1591/ab35c7

13. Telyshev, D.V., Denisov, M.V., Selishchev, S.V. Numerical Modeling of Blood Flows in Rotary Pumps for Use in Pediatric Heart Surgery in Patients Undergoing the Fontan Procedure (2019) Biomedical Engineering, 52 (6), pp. 407-411. DOI: 10.1007/s10527-019-09857-5

14. Gorbunov, B.B., Vostrikov, V.A., Nesterenko, I.V., Telyshev, D.V. A History of the Discovery of the Hoorweg–Weiss–Lapicque Law (2019) Biomedical Engineering, 52 (5), pp. 357-360. DOI: 10.1007/s10527-019-09847-7

15. Petukhov, D., Korn, L., Walter, M., Telyshev, D.A Novel Control Method for Rotary Blood Pumps as Left Ventricular Assist Device Utilizing Aortic Valve State Detection (2019) BioMed Research International, 2019, art. no. 1732160, DOI: 10.1155/2019/1732160

16. Ichkitidze, L.P., Belodedov, M.V., Selishchev, S.V., Telyshev, D.V. Magnetomodulating Magnetometer Based on High-Temperature Superconductors (2019) IEEE Magnetics Letters, 10, art. no. 8920142, DOI: 10.1109/LMAG.2019.2957250

17. Danilov, A.A., Aubakirov, R.R., Mindubaev, E.A., Gurov, K.O., Telyshev, D.V., Selishchev, S.V.An algorithm for the computer aided design of coil couple for a misalignment tolerant biomedical inductive powering unit (2019) IEEE Access, 7, art. no. 8723044, pp. 70755-70769. DOI: 10.1109/ACCESS.2019.2919259

18. Ichkitidze, L., Gerasimenko, A., Telyshev, D., Petukhov, V., Kitsyuk, E., Podgaetski, V., Selishchev, S.Layers of composite nanomaterials as prototype of a tensoresistor sensor (2019) Springer Proceedings in Physics, 224, pp. 523-535. DOI: 10.1007/978-3-030-19894-7_40

19. Pugovkin, A.A., Markov, A.G., Selishchev, S.V., Korn, L., Walter, M., Leonhardt, S., Bockeria, L.A., Bockeria, O.L., Telyshev, D.V. Advances in Hemodynamic Analysis in Cardiovascular Diseases Investigation of Energetic Characteristics of Adult and Pediatric Sputnik Left Ventricular Assist Devices during Mock Circulation Support (2019) Cardiology Research and Practice, 2019, art. no. 4593174, DOI: 10.1155/2019/4593174

20. Telyshev, D., Denisov, M., Satyukova, A., Le, T. Computational Fluid Dynamics Simulation of the Sputnik Pediatric Rotary Blood Pump (2018) Proceedings of 2018 IEEE East-West Design and Test Symposium, EWDTS 2018, art. no. 8524845, DOI: 10.1109/EWDTS.2018.8524845

21. Korn, L., Lyra, S., Rüschen, D., Pugovkin, A., Telyshev, D., Leonhardt, S., Walter, M. Heart phantom with electrical properties of heart muscle tissue (2018) Current Directions in Biomedical Engineering, 4 (1), pp. 97-100. DOI: 10.1515/cdbme-2018-0025

22. Petukhov, D., Telyshev, D., Walter, M., Korn, L. An algorithm of system identification for implantable rotary blood pumps (2018) Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018, pp. 61-63. DOI: 10.1109/USBEREIT.2018.8384550

23. Telyshev, D., Pugovkin, A., Selishchev, S., Ruschen, D., Leonhardt, S. Hybrid mock circulatory loop for training and study purposes (2018) Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018, pp. 29-32. DOI: 10.1109/USBEREIT.2018.8384542

24. Telyshev, D., Denisov, M., Pugovkin, A., Selishchev, S., Nesterenko, I.The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development (2018) Artificial Organs, 42 (4), pp. 432-443. DOI: 10.1111/aor.13109

25. Samoilov, A.A., Telyshev, D.V. Determination of Heart Rate Variability from High-Resolution Esophageal Manometry Data (2018) Biomedical Engineering, 51 (5), pp. 332-335. DOI: 10.1007/s10527-018-9742-y

26. Ichkitidze, L.P., Belodedov, M.V., Selishchev, S.V., Telishev, D.V. Magnetic field sensor for non-invasive control medical implants (2018) Materials Physics and Mechanics, 37 (2), pp. 146-152. DOI: 10.18720/MPM.3722018-6

27. Pugovkin, A.A., Telyshev, D.V. Automated pediatric cardiovascular simulator for left ventricular assist device evaluation (2017) 2017 International Siberian Conference on Control and Communications, SIBCON 2017 - Proceedings, art. no. 7998543, DOI: 10.1109/SIBCON.2017.7998543

28. Telyshev, D.V., Pugovkin, A.A., Selishchev, S.V. A Mock Circulatory System for Testing Pediatric Rotary Blood Pumps (2017) Biomedical Engineering, 51 (2), pp. 83-87. DOI: 10.1007/s10527-017-9689-4

29. Petukhov, D.S., Telyshev, D.V. Performance of a Right Ventricular Assist Rotary Pump in the Process of Biventricular Mechanical Circulatory Support (2017) Biomedical Engineering, 51 (1), pp. 33-36. DOI: 10.1007/s10527-017-9679-6

30. Kurilova, U.E., Zhurbina, N.N., Mezentseva, M.V., Russu, L.I., Suetina, I.A., Pyanov, I.V., Telyshev, D.V., Gerasimenko, A.Y. Spectral Studies of Biodegradation and Hemolysis Caused by Contact of Bulk and Film Nanocomposites with Biological Fluids (2017) Biomedical Engineering, 51 (1), pp. 16-19. DOI: 10.1007/s10527-017-9675-x

31. Telyshev, D.V. Load Sensitivity of Rotary Blood Pumps under Static Pressure Conditions (2017) Biomedical Engineering, 50 (6), pp. 425-428. DOI: 10.1007/s10527-017-9670-2

32. Telyshev, D.V., Denisov, M.V., Selishchev, S.V. The Effect of Rotor Geometry on the H−Q Curves of the Sputnik Implantable Pediatric Rotary Blood Pump (2017) Biomedical Engineering, 50 (6), pp. 420-424. DOI: 10.1007/s10527-017-9669-8

33. Bockeria, L.A., Bockeria, O.L., Selishchev, S.V., Telyshev, D.V., Le, T.G., Satyukova, A.S., Shvartz, V.A., Glushko, L.A. Experimental Determination of the Normalized Index of Hemolysis for the Sputnik Implantable Pediatric Rotary Blood Pump (2017) Biomedical Engineering, 50 (6), pp. 416-419. DOI: 10.1007/s10527-017-9668-9

34. Ichkitidze, L.P., Selishchev, S.V., Shichkin, N.Y., Telyshev, D.V. Superconducting film concentrator of the magnetic field (2017) Springer Proceedings in Physics, 193, pp. 467-472. DOI: 10.1007/978-3-319-56062-5_39

35. Denisov, M.V., Selishchev, S.V., Telyshev, D.V., Frolova, E.A. Development of Medical and Technical Requirements and Simulation of the Flow−Pressure Characteristics of the Sputnik Pediatric Rotary Blood Pump (2017) Biomedical Engineering, 50 (5), pp. 296-299. DOI: 10.1007/s10527-017-9641-7

36. Bazaev, N.A., Grinval'd, V.M. Systemic Construction of Automated Equipment for Artificial Blood Cleansing (2020) Biomedical Engineering, 53 (5), pp. 299-304. DOI: 10.1007/s10527-020-09930-4

37. Bazaev, N.A., Grinval'd, V.M., Selishchev, S.V. Modeling of Artificial Purification Processes in a Biotechnical System for Automated Peritoneal Dialysis with Regeneration (2019) Biomedical Engineering, 53 (4), pp. 231-235. DOI: 10.1007/s10527-019-09915-y

38. Bazaev, N.A., Rudenko, P.A., Grinval'd, V.M., Pozhar, K.V., Litinskaia, E.L. Testing of a Short-Term Blood Glucose Prediction Algorithm Using the DirecNet Database (2019) Biomedical Engineering, 52 (6), pp. 419-422. DOI: 10.1007/s10527-019-09860-w

39. Bazaev, N.A., Dorofeeva, N.I., Zhilo, N.M., Streltsov, E.V. In vitro trials of a wearable artificial kidney (WAK) (2018) International Journal of Artificial Organs, 41 (2), pp. 84-88. DOI: 10.5301/ijao.5000651

40. Bazaev, N.A., Grinval'd, V.M., Putrya, B.M., Shpikalov, A.M., Tarasov, Y.V., Philippov, Y.I., Boyarskiy, M.D. A Wearable Device for Continuous Automated Peritoneal Dialysis with Dialysis−Sorption Regeneration of the Dialysis Fluid (2018) Biomedical Engineering, 52 (4), pp. 219-223. DOI: 10.1007/s10527-018-9817-9

41. Bazaev, N.A., Grinval'd, V.M., Selishchev, S.V., Strokov, A.G.A Wearable Device for Low-Flow Detoxification of Human Body by Peritoneal Dialysis (2018) Biomedical Engineering, 52 (3), pp. 147-151. DOI: 10.1007/s10527-018-9801-4

42. Bazaev, N.A., Grinval'd, V.M., Zhilo, N.M., Putrya, B.M. Design Concepts for Wearable Artificial Kidney (2018) Biomedical Engineering, 51 (6), pp. 394-400. DOI: 10.1007/s10527-018-9757-4

43. Bazaev, N.A., Grinval'd, V.M., Zhigaylo, A.N., Litinskaya, E.L., Pozhar, K.V., Rudenko, P.A. A Test Bench for Performance Validation of an Artificial Pancreas System (2018) Biomedical Engineering, 51 (6), pp. 422-426. DOI: 10.1007/s10527-018-9762-7

44. Rudenko, P.A., Bazaev, N.A., Pozhar, K.V., Litinskaia, E.L., Grinvald, V.M., Chekasin, A.I. Getting Daily Blood Glucose Tracks Using Clinical Protocols of the DirecNet Database (2018) Biomedical Engineering, 51 (5), pp. 346-349. DOI: 10.1007/s10527-018-9745-8

45. Bazaev, N.A., Zhigaylo, A.N., Litinskaya, E.L., Pozhar, K.V. Main Approaches to Creating Portable Automated Insulin Treatment Devices (2017) Biomedical Engineering, 50 (6), pp. 402-405. DOI: 10.1007/s10527-017-9665-z

46. Bazaev, N.A., Bizyukov, I.O., Streltsov, E.V. Mathematical Modeling of Sorption in a Wearable Artificial Kidney with Dialysate Regeneration (2017) Biomedical Engineering, 50 (5), pp. 318-320. DOI: 10.1007/s10527-017-9646-2

47. Bazaev, N.A., Grinvald, V.M., Selishchev, S.V., Kalinov, A.V., Kozachuk, A.V., Kosatkin, V.V., Tyunder, F.F., Federyakin, D.V. Exp erimental research of wearable artificial kidney (2017) Vestnik Transplantologii i Iskusstvennykh Organov, 19 (3), pp. 46-52. DOI: 10.15825/1995-1191-2017-3-46-52

 

48. Tereshchenko, S.A., Lysenko, A.Y. Investigation of the Scattering Influence on the Quality of Image Reconstruction in Single-Photon Emission Computed Tomography in a Proportional Scattering Medium (2020) Biomedical Engineering, 53 (5), pp. 370-374. DOI: 10.1007/s10527-020-09945-x

49. Savelyev, M.S., Gerasimenko, A.Y., Podgaetskii, V.M., Tereshchenko, S.A., Selishchev, S.V., Tolbin, A.Y. Conjugates of thermally stable phthalocyanine J-type dimers with single-walled carbon nanotubes for enhanced optical limiting applications (2019) Optics and Laser Technology, 117, pp. 272-279. DOI: 10.1016/j.optlastec.2019.04.036

50. Tereshchenko, S.A., Fedorov, G.A., Antakov, M.A., Burnaevsky, I.S.A Back Projection Method for Hexagonal Coding Collimators in Emission Tomography with Multiplexed Measurement Systems (2018) Biomedical Engineering, 51 (6), pp. 441-445. DOI: 10.1007/s10527-018-9766-3

51. Fedorov, G.A., Tereshchenko, S.A. Generalized Extended Sequences for Integrated-Code Measurement Systems (2017) Measurement Techniques, 60 (8), pp. 755-762. DOI: 10.1007/s11018-017-1267-3

52. Tereshchenko, S.A.Single-photon emission computed tomography in a proportional scattering medium (2017) Technical Physics, 62 (9), pp. 1293-1299. DOI: 10.1134/S1063784217090250

53. Tereshchenko, S.A., Burnaevskiy, I.S., Dolgushin, S.A., Shalaev, P.V., Yudin, I.K., Deshabo, V.A. Determination of the Composition of Liquid Polydispersions of Cylinder-like Microorganisms from the Laser Depolarization Degree (2017) Biomedical Engineering, 50 (6), pp. 385-389. DOI: 10.1007/s10527-017-9661-3

54. Tereshchenko, S.A., Shalaev, P.V., Masloboev, Y.P., Dolgushin, S.A., Deshabo, V.A., Yudin, I.K. Electrokinetic Potential of Nanorods and Cells in Liquid Dispersions (2017) Biomedical Engineering, 50 (5), pp. 333-338. DOI: 10.1007/s10527-017-9650-6

55. Danilov A. A. Powering of implantable medical devices: History, current status and prospects // AIP Conference Proceedings. 2019. Vol. 2140, Is.1. PP. 020016-1–020016-3.

56. Mindubaev E.A., Danilov A.A. Effect of Сlass E Power Amplifier Loading Network on Output Power and Efficiency of Inductive Powering System for Implantable Medical Devices // AIP Conference Proceedings. 2019. Vol. 2140, Is.1. PP. 020046-1–020046-4.

57. Aubakirov R.R. Danilov A.A. Geometrical Design of LC-circuits as a Part of Inductive Power Supply Systems for Implantable Medical Devices // AIP Conference Proceedings. 2019. Vol. 2140, Is.1. PP. 020002-1–020002-4. (SJR2018 0.182)

58. Surkov O.A., Danilov A.A., Mindubaev E.A. An Algorithm for Designing AC Generators for Inductive Powering Systems of Batteryless Implants//Biomedical Engineering, 2019. – Vol. 52, Is. 5. – PP. 331-334. (translated version, original paper in Russian)

59. Danilov A.A., Mindubaev E.A., Gurov K.O., Ryabchenko E.V. Modeling of Tissue Heating by Wireless Power Supply Units of Batteryless Implants // Biomedical Engineering, 2018. – Vol. 52, Is. 4. – PP. 267-270. (translated version, original paper in Russian)

60. Aubakirov R.R. Danilov A.A. Effect of Antenna Shape on Wireless Data Channel Bandwidth in Batteryless Implants // Biomedical Engineering, 2018. – Vol. 51, Is. 6. – PP. 449-452. (translated version, original paper in Russian)

61. Danilov A.A., Mindubaev E.A., Selishchev S.V. Analysis and comparison of an inductive powering unit control methods // 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). 2017.

62. Danilov A.A., Mindubaev E.A., Selishchev S.V. The Effect of Transmitter Coil Size on the Optimal Implantation Depth of Receiver Coil in Transcutaneous Inductive Energy Transfer Systems // Biomedical Engineering, 2018. – Vol. 51, Is. 5. – PP. 354-357. (translated version, original paper in Russian)

63. Danilov A.A., Mindubaev E.A., Selishchev S.V. Methods for Compensation of Coil Misalignment in Systems for Inductive Transcutaneous Power Transfer to Implanted Medical Devices // Biomedical Engineering, 2017. – Vol. 51, Is. 1. PP. 56-60. (translated version, original paper in Russian)