Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александр Министерство науки и высшего образования Российской Федерации

Должность: Ректор Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 05.02.2025 12:08:26

уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736**ffMontesexuidete**ститут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

MI

<u>202</u> г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Методы и средства исследования и оптимизации литографических процессов и оборудования»

Направление подготовки - 11.04.03 «Конструирование и технология электронных средств»

Направленность (профиль) – «Технологическое оборудование для производства изделий микроэлектроники и микросистемной техники»

Программа разработана в Передовой инженерной школе «Средства проектирования и производства электронной компонентной базы»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-1 «Способен формулировать цели и задачи научных исследований, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач, делать научно-обоснованные выводы, готовить научные публикации и заявки на изобретения»

Обобщенная трудовая функция. Проведение научных исследований

Трудовая функция. Планировать научные исследования, определяя цели, задачи и методы исследования

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций
ПК-1.МСИО ЛПО	- определение цели,	Знания: роли и места процессов
Способен	постановка задач	литографии в технологических
формулировать цели и	проектирования, подготовка	маршрутах производства
задачи научных	технических заданий на	Умения: использовать основные
исследований	выполнение проектов	приемы работы в САПР
литографических	электронных средств;	Компас-3D для построения 3D-
процессов и	- проектирование модулей,	моделей деталей и узлов СТО
оборудования,	блоков, систем и	Опыт деятельности: имеет опыт
обоснованно выбирать	комплексов электронных	работы в САПР Компас-3D для
теоретические и	средств с учетом заданных	разработки деталей и сборочных
экспериментальные	требований;	единиц СТО, а также для
методы и средства	- разработка проектно-	оформления конструкторской
решения	конструкторской и/или	документации
сформулированных	технологической	
задач и делать	документации на	
обоснованные выводы	разрабатываемые	
	конструкции электронных	
	средств в соответствии с	
	методическими и	
	нормативными	
	требованиями.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений, Блока 1 «Дисциплины (модули)» образовательной программы, является элективной.

Входные требования к дисциплине:

- знание основ ЕСКД;
- умение анализировать и интерпретировать чертежи и схемы;
- владение навыками трехмерного моделирования в САПР Компас-3D.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	сть	Контан	стная раб	ота			
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация	
2	3	7	252	16	32	-	168	Экз (36)	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конт	гактная ра	бота	В	0
№ и наименование модуля	Лекции	Лабораторные занятия	Практические занятия	Самостоятельная работа	Формы текущего контроля
1. Введение в литографические процессы	8	16	-	84	Защита лабораторных работ Тестирование Контроль выполнения практико-ориентированного задания
2. Оборудование для литографических процессов	8	16	-	84	Защита лабораторных работ Тестирование Сдача практико- ориентированного задания

4.1. Лекционные занятия

№ модуля	Дисциплины № лекции	Объем занятий (часы)	Краткое содержание		
	1	2	История появления и развития литографии		
	2 2		Основы литографии: роль и место процессов литографии в технологических маршрутах производства		
1	3	2	Разнообразие литографических методов: от рентгеновской до электронной литографии		
	4	2	Основные комплектующие, используемые в оборудовании и технологии литографии		
	5	2	Основные материалы, используемые в оборудовании и технологии литографии		
2	6	2	Оборудование для литографии: принципы работы и современные тенденции (в лекции применяется интерактивная VR-лаборатория «Фотолитография»)		
	7	2	Контроль качества в литографии: методы диагностики и анализа		
	8	2	Оптимизация литографических процессов: современные подходы и перспективы развития		

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные занятия

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы		
	1	4	Разработка деталей для узла привода		
1	2	4	Разработка шкива и ремня		
1	3	4	Сборка привода с применением стандартных и покупных изделий		
	4	4	Разработка деталей для узла ввода вращения		

	5	4	Сборка узла - ввод вращения
2	6	4	Сборка узла – привод вращения
2	7	4	Оформление сборочных чертежей на узлы ввода и привода вращения
	8	4	Оформление спецификации на узлы ввода и привода вращения

4.4. Самостоятельная работа студентов

№ модуля дисциплины		
	16	Подготовка к лабораторным работам №1-№4
1	62	Выполнение практико-ориентированного задания
1	4	Подготовка к тестированию по материалам лекций первого модуля
	2	Выполнение теста №1
	16	Подготовка к лабораторным работам №5-№8
	50	Выполнение практико-ориентированного задания
2	4	Подготовка к тестированию по материалам лекций второго модуля
	2	Выполнение теста №2
	12	Подготовка к сдаче практико-ориентированного задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

	Учебно-методическое обеспечение для самостоятельной работы студентов в составе					
УМК	дисциплины (ОРИОКС, http://orioks.miet.ru/):					
	Сценарий обучения по дисциплине					
	Методические указания для студентов по изучению дисциплины «Методы и					
средс	тва исследования и оптимизации литографических процессов и оборудования».					
	Методические указания студентам по выполнению практико-ориентированного					
задан	ия (ПОЗ) по дисциплине.					
	Описание практико-ориентированного задания					
Моду	ль 1 «Введение в литографические процессы»:					
	Презентации лекций №1-4;					
	Описания лабораторных работ №1-4;					
Моду	ль 2 «Оборудование для литографических процессов»:					
	Презентации лекций №5-8;					
	Описания паболаторных работ №5-8.					

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Голишников, А. А. (Автор МИЭТ, ИЭМС). Основы технологии электронной компонентной базы: учебное пособие / А. А. Голишников, И. В. Сагунова, В. И. Шевяков; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". Москва: МИЭТ, 2022. 268 с. Имеется электронная версия издания. ISBN 978-5-7256-0991-2: б.ц., 300 экз. Текст: непосредственный: электронный.
- 2. Симонов Б.М. (Автор МИЭТ, МЭ). Технологические основы микроэлектроники : Учеб. пособие. Ч. 2 / Б.М. Симонов, А.В. Заводян ; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ); Под ред. С.П. Тимошенкова. М. : МИЭТ, 2009. 156 с. Имеется электронная версия издания. ISBN 978-5-7256-0541-9

Периодические издания

- 1. МИКРОЭЛЕКТРОНИКА / РАН. Москва : ИКЦ Академкнига, 1972 . URL: https://eivis.ru/browse/publication/79437 (дата обращения: 28.10.2024). Режим доступа: по подписке.
- 2. ФИЗИКА И ТЕХНИКА ПОЛУПРОВОДНИКОВ = SEMICONDUCTORS / PAH, Физико-технический институт имени А.Ф. Иоффе; Гл. ред. Р.А. Сурис. СПб. : Hayka, 1967 . URL: https://link.springer.com/journal/11453 (дата обращения: 31.10.2024)
- 3. НАНО- И МИКРОСИСТЕМНАЯ ТЕХНИКА: Ежемес. междисциплинарный теорет. и приклад. науч.-техн. журн. / РАН, Отделение информационных технологий и вычислительных систем. М.: Новые технологии: Нано-микросистемная техника, 1999 .
- 4. РОССИЙСКИЕ НАНОТЕХНОЛОГИИ = NANOTECHNOLOGIES IN RUSSIA / Федеральное агентство по науке и инновациям РФ, Парк-медиа. М. : ИКЦ Академкнига, 2006 . URL: http://elibrary.ru/contents.asp?titleid=10601 (дата обращения: 12.12.2024)

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU: Научная электронная библиотека : сайт. URL: https://elibrary.ru/defaultx.asp. (дата обращения: 31.10.2024) Режим доступа : для зарегистрир. пользователей.
- 2. Электронно-библиотечная система Лань : URL: https://e.lanbook.com/ (дата обращения: 31.10.2024). Режим доступа: для авториз. пользователей МИЭТ.

3. Электронно-библиотечная система Znanium : URL: https://znanium.ru (дата обращения: 31.10.2024). - Режим доступа: для авториз. пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение: основано на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС http://orioks.miet.ru. Система ОРИОКС используется в дисциплине для уведомления студентов, обеспечения методическим материалом по дисциплине (для подготовки к занятиям и для самостоятельной работы), для размещения информации о графике проведения контрольных мероприятий и полученных оценках.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта преподавателя, бесплатные сервисы (Telegram, Вконтакте и др.).

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в формах тестирования в ОРИОКС (http://orioks.miet.ru) или MOODLe.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Компьютерный класс, аудитория №4116	Компьютер Raskat Station 930 (r9 7900X, B650, RAM 32Gb, SSD 1Tb,	Microsoft Office Professional Plus 2013
аудитория ж 110	16Gb A4000, 650W, NoOS) WR3/456 (+ клава и мышь)	(п. 15. Реестра ПО).
		САПР Компас-3D
		Professional Plus 2013
		(п. 15. Реестра ПО).
		Корпоративная
		информационно-
		технологическая
		платформа ОРИОКС
		(п.88 Реестра ПО).

		Adobe Reader.
		Интерактивная VR- лаборатория «Фотолитография»
Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	OC Microsoft Windows, Microsoft Office, браузер

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-1.МСИО ЛПО** «Способен формулировать цели и задачи научных исследований литографических процессов и оборудования, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач и делать обоснованные выводы»

Фонд оценочных средств представлен отдельными документом и размещен в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина включает в себя: лекции, лабораторные работы, самостоятельную работу студента (СРС) и контрольные мероприятия. Посещение лабораторных работ обязательно.

Основной СРС является большое практико-ориентированное задание, которое основано на реальных задачах предприятия-партнера по исследованию и разработке узлов, и элементов из состава литографического оборудования. Выполнение задания требует навыков самостоятельного и творческого мышления, уверенного знания теоретического материала и навыков решения практических заданий в области разработки оборудования. Более подробно – см. описание практико-ориентированного задания (ПОЗ).

Лабораторные работы проходят следующим образом:

- 1) Занятие начинается с определения темы и содержания работы.
- 2) Преподаватель проводит вводную беседу, в ходе которой студенты осмысливают сущность предстоящей работы и последовательность её выполнения.

- 3) Ознакомление с описанием лабораторной работы, с ее целью и задачами, с порядком ее выполнения и видом отчетности по итогам выполнения.
- 4) Лабораторные работы выполняются студентами индивидуально, групповым или коллективно.
- 5) Во время самостоятельной работы преподаватель осуществляет оперативный контроль, оказывает помощь, поддержку и вносит коррективы в деятельность студентов.
- 6) Проводится анализ и оценка выполненных работ, полученных результатов.

Результаты, полученные в ходе выполнения лабораторных работ и контрольных мероприятий, выгружаются студентами в свои электронные портфолио через систему ОРИОКС.

По завершению изучения дисциплины предусмотрен экзамен, при этом оценка итогов учебной деятельности студента основана на балльно-рейтинговой системе.

Более подробно – см. методические указания студентам, которые выгружены в систему ОРИОКС по дисциплине.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительно-балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме – до 70 баллов), сдача экзамена (в сумме до 30 баллов). Перечень контрольных мероприятий и методика их балльной оценки изложена в МУС.

По сумме баллов выставляется итоговая оценка по предмету.

Структура и график контрольных мероприятий доступен в журнале успеваемости в OPИOKC// URL: http://orioks.miet.ru/ .

Разработчик:

Старший преподаватель Института НМСТ

/П.А. Горностаев/

Рабочая программа дисциплины «Методы и средства исследования и оптимизации литографические процессов и оборудования» по направлению подготовки 11.04.03 «Конструирование и технология электронных средств», направленности (профилю) «Технологическое оборудование для производства изделий микроэлектроники и микросистемной техники» разработана в Институте НМСТ и утверждена на заседании Ученого совета Института НМСТ 3 декабря 2024 года, протокол № 6.

Директор Института НМСТ

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

/ И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

/ Т.П.Филиппова /

/А.Л.Переверзев /

Рабочая программа согласована с Передовой инженерной школой

Директор ПИШ