Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александровичнистерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ Дата подписания: 16.07.2024 12.35.54

Дата подписания: 16.07.2024 12.35.54

Уникальный программный ключ:

«Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d**%Mbbbcasbckий**бинститут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

« 2023 г.

А.Г.Балашов

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Прикладная механика»

Направление подготовки - 27.03.05 «Инноватика» Направленность (профиль) - «Управление наукоемким производством»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций/подкомпетенций
ОПК-2 Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических, технических и естественнонаучных дисциплин (модулей).	ОПК-2 ПМ Способен формулировать задачи профессиональной деятельности на основе знания методов теоретической и прикладной механики	Знает основные принципы и методы теоретической и прикладной механики Умеет решать профессиональные задачи с применением методов расчета типовых элементов конструкций систем автоматизации и управления, микромеханических и роботизированных устройств Имеет опыт анализа и расчета конструкций систем автоматизации и управления, микромеханических и роботизированных устройств.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть, Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине - знание основ высшей математики, физики, инженерной и компьютерной графики; умение применять знания разделов высшей математики, физики, инженерной и компьютерной графики для решения стандартных профессиональных задач.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контактная работа			ая	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельна работа (часы)	Промежуточная аттестация
2	3	3	108	32	16	16	44	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			Ж		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Контактная работа	
1. Теоретическая					Тестирование	
механика	8	4	6	14	Защита лабораторных работ (Л.Р)	
2. Прикладная механика					Тестирование	
	18	10	8	14	Защита лабораторных работ (Л.Р)	
3.Основы					Рубежный контроль	
конструирования		2	2		(тестовое задание)	
	6			16	Защита лабораторных работ (Л.Р)	
					Зачет по дисциплине	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание				
1	1	2	Статика твердого тела. Основные задачи, понятия и исходные положения статики. Связи и их реакции.				
	2	2	Сложение сил. Система сходящихся сил. Проекции силы на ось и на плоскость. Равновесие системы сходящихся сил.				
	3	2	Момент силы относительно центра (точки). Пара сил. Момент силы относительно оси. Приведение системы сил к центру.				
	4	2	Плоская система сил и условия ее равновесия. Система параллельных сил. Центр тяжести твердого тела. Способы определения координат центров тяжести тел.				
2	5	2	Прикладная механика. Основные определения, гипотезы и допущения. Внутренние силовые факторы, напряжения и деформации.				
2	6	2	Анализ внутренних силовых факторов в элементах конструкций растяжении (сжатии), кручении и изгибе.				

_			<u> </u>				
	7	2	Расчет на прочность и жесткость при растяжении и сжатии элементов конструкций.				
	8	2	Расчет на прочность и жесткость при сдвиге и кручении элементов конструкций.				
	9	2	Изгиб. Геометрические характеристики поперечных сечений. Расчет на				
	9	2	прочность при изгибе.				
	10	2	Расчет на жесткость при изгибе. Интеграл Мора, способ Верещагина.				
			Статически неопределимые системы, работающие на изгиб.				
	11	2	Расчет на устойчивость стержней и пластин.				
	12	2	Расчет на прочность при сложном напряженном состоянии. Гипотезы				
			прочности.				
	13	2	Расчет на выносливость при действии переменных циклических				
			напряжений. Предел выносливости, коэффициент запаса выносливости.				
			Концентрация напряжений.				
	14	2	Основы конструирования. Основные положения. Соединения деталей.				
			Материалы. Конструкции.				
3	15	2	Передаточные механизмы. Основные понятия и определения.				
			Классификация механизмов.				
	16	2	Элементы механических передач. Кинематический и силовой расчет				
			механизма привода.				

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия				
1	1	2	Статика сил. Плоские системы сходящихся и параллельных сил.				
			Условия равновесия.				
	2	2	Виды опор (связей). Определение реактивных сил и моментов в опорах				
			(связях).				
	3	2	Определение центра тяжести плоской фигуры.				
	4	2	Расчет на прочность и жесткость элементов конструкций при				
			растяжении и сжатии.				
2	5	2	Расчет на прочность и жесткость элементов конструкций при кручении.				
	6	2	Расчет на прочность и жесткость элементов конструкций при изгибе.				
	7	2	Расчет на устойчивость продольно-сжатых стержней.				
3	8	2	Расчеты зубчатых передач.				

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы	
1	1	2	Исследование свойств плоской системы сходящихся сил	
1	2 2		Определение координат центра тяжести плоских фигур	
	3	2	Испытания на растяжение и на сжатие	
	4	2	Испытание материалов на кручение	
2	5	2	Испытание бруса на изгиб	
	6	2	Определение упругих характеристик материалов	
	7	2	Исследование плоского напряженного состояния методом тензометрии	
3	8	2	Изучение конструкций и определение параметров зубчатых редукторов	

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	7	Подготовка к тестированию
	7	Подготовка к лабораторным работам (ЛР)
2	7	Подготовка к тестированию
	7	Подготовка к лабораторным работам (ЛР)
3	7	Подготовка к Рубежному контролю (РК)
	2	Подготовка к лабораторным работам (ЛР)
	7	Подготовка к зачету по дисциплине

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

- Методические указания студентам по изучению курса
- Методические указания студентам по освоению внешнего электронного ресурса

Модуль 1 «Теоретическая механика»

- Конспект лекций.
- Учебно-методическое пособие для практических занятий
- Лабораторный практикум

Модуль 2 «Прикладная механика»

- Конспект лекций.
- Учебно-методическое пособие для практических занятий
- Лабораторный практикум

Модуль 3 «Основы конструирования»

- Конспект лекций.
- Учебно-методическое пособие для практических занятий
- Лабораторный практикум

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Гребенкин, В. З. Техническая механика : учебник и практикум для вузов / В. З. Гребенкин, Р. П. Заднепровский, В. А. Летягин ; под редакцией В. З. Гребенкина, Р. П. Заднепровского. Москва : Издательство Юрайт, 2020. 390 с. (Высшее образование). ISBN 978-5-9916-5953-6. Текст : электронный // ЭБС Юрайт [сайт]. URL: http://www.biblio-online.ru/bcode/450655 (дата обращения: 07.09.2023).
- 2. Гребенкин В.З. Механика: Пособие к практическим занятиям / В.З. Гребенкин, В.А. Летягин, А.И. Погалов. М.: МИЭТ, 2010 156 с. Имеется электронная версия издания.
- 3. Прикладная механика: Лабораторный практикум / В. 3. Гребенкин [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. А.И. Погалова. М.: МИЭТ, 2014. 140 с. Имеется электронная версия издания.
- 4. Тарг С.М. Краткий курс теоретической механики [Текст] : Учебник / С. М. Тарг. 20-изд., стер. М. : Высшая школа, 2010. 416 с. ISBN 978-5-06-006193-2.
- 5. Теоретическая механика: Учебно-методическое пособие для практических занятий /Под ред. С.В. Угольникова, М.: МИЭТ, 2016. 204 с. Имеется электронная версия издания.
- 6. Техническая механика микросистем [Текст] : Учеб. пособие / А. И. Погалов [и др.] ; Под ред. В.Н. Тимофеева. М. : МИЭТ, 2006. 188 с. Имеется электронная версия издания. ISBN 5-7256-0427-6.
- 7. Техническая механика микросистем: Учеб. пособие / А. И. Погалов [и др.] Под ред. В.Н. Тимофеева. М.: Бином. Лаборатория знаний, 2009. 176 с. ISBN 978-5-94774-907-6.
- 8. Тимофеев В.Н. Инженерные расчеты элементов и узлов микросистемной техники [Текст] : Учеб. пособие / В. Н. Тимофеев, А. И. Погалов, С. В. Угольников ; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ); Под ред. В.Н. Тимофеева. М. : МИЭТ, 2009. 192 с. Имеется электронная версия издания. ISBN 978-5-7256-0542.

Периодические издания

1. Стандарты и качество: Ежемесячный научно-технический и экономический журнал / РИА "Стандарты и качество"; Гл. ред. Г.П. Воронин. - М.: Стандарты и качество, 1927 -. — URL: http://elibrary.ru/contents.asp?titleid=8235 (дата обращения: 07.09.2023). - Режим доступа: для авториз. пользователей МИЭТ.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. ТЕХЭКСПЕРТ: Электронный фонд правовой и нормативно-технической документации: сайт / Кодекс. Москва, 2012 . URL: http://docs.cntd.ru/ (дата обращения: 07.09.2023).
- 2. Росстандарт / Федеральное агентство по техническому регулированию и метрологии: сайт. Mockba. URL: https://www.rst.gov.ru/portal/gost//home/standarts (дата обращения 07.09.2023).
- 3. Лань: электронно-библиотечная система. Санкт-Петербург, 2011. URL: https://e.lanbook.com/ (дата обращения: 07.09.2023). Режим доступа: для авториз. пользователей МИЭТ.
- 4. Российское образование: Федеральный портал: сайт. Москва, 2002 . URL: http://www.edu.ru/ (дата обращения: 07.09.2023).
- 5. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 07.09.2023). Режим доступа: для зарегистрир. пользователей.
- 6. РУКОНТ: Национальный цифровой ресурс: Электронно-библиотечная система: сайт. Москва: Сколково, 2010 URL: https://lib.rucont.ru/search (дата обращения: 07.09.2023). Режим доступа: для авториз. пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

В ходе реализации обучения используется «расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях с последующим самостоятельным выполнением индивидуального задания. Работа проводится по следующей схеме: аудиторная работа (семинар с отработкой типового задания в группе); СРС (онлайновая работа с использованием онлайн-ресурсов, в т.ч. для организации обратной связи с обсуждением, консультированием, с последующей доработкой и подведением итогов). Итоги СРС представляются на заключительном занятии с участием всех студентов группы и преподавателя.

Важную роль в процессе обучения играют лабораторные занятия, предназначенные не только для закрепления знаний, полученных на лекционных и практических занятиях, и при выполнении самостоятельной работы, но и для получения навыков исследовательской и практической работы на лабораторном оборудовании. Лабораторные работы, как правило, проводятся в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения экспериментальных исследований и при защите полученных результатов.

При проведении практических занятий студенты не только закрепляют знания, полученные на лекциях, но и получают навыки решать стандартные профессиональные задачи с применением законов и методик расчетов типовых элементов конструкций микромеханических и роботизированных устройств и систем.

Освоение образовательной программы обеспечивается ресурсами размещенными в электронной информационно-образовательной среде OPИOKC http://orioks.miet.ru.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя, Skype и др.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы (http://orioks.miet.ru): электронные версии лекций, лабораторных работ, практических занятий, методических разработок по тематике курса и др. В рамках тестирования студентов используется внешний электронный ресурс (http://k-a-t.ru/testy_tex_mex/test1/level.php): электронные версии тестов по основным разделам дисциплины.

Дисциплина может быть реализована в дистанционном формате. При дистанционном обучении проводятся *on-line* лекции, практические и лабораторные занятия по Skype и Zoom, запись которых выкладывается в *Youtube* и Miet.study. Вся информация доступна для студентов через среду ОРИОКС.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Специализированная мебель (место преподавателя, посадочные места для студентов) Материально-техническое оснащение: Моноблок Lenovo F0AM0092RK, проектор Panasonic PT-VW535N, экран Mediavisor, экран рулонный настенный, телевизор Panasonic TX-85XR940, телевизор LG 55UF771V 4шт, клавиатура Lenovo SK-8861, мышь Lenovo ZTM600, радиосистема Shure BLX88E K3E, акустика JBL PRX700, акустика EON15 G2 2, микшер Nady SRM-10X, HDMI-адаптер Trendnet TU3-HDMI, HDMI-DVB-T Modulator Dr.HD MR 125 HD, коммутатор Eltex MES2208P, учебная доска, кафедра	OC Microsoft Windows Microsoft Office браузер Acrobat reader DC
Учебная аудитория «Лаборатория прочности и динамических испытаний»	Специализированная мебель (место преподавателя, посадочные места для студентов) Материально-техническое оснащение: Анализатор спектра СКЧ-56 Машина разрывная RM-102, Машина КМ-50-1 (кручения), Тип. комплект оборуд. по курсу прикл. Механика, Универс.лаб. уч. Стенд «Сопротивл. матер.», Универс. испыт. машина УММ-5	Не требуется
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC, AllFusion DM, Microsoft Visual Studio

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ОПК-2.ПМ** «Способен выполнять расчеты микромеханических и роботизированных устройств и систем по критериям прочности и жесткости».

Фонд оценочных средств представлен отдельным документом и размещён в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://www.orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Для формирования подкомпетенции и приобретения необходимых знаний, умений и опыта деятельности в рамках данного курса читаются лекции, проводятся практические и лабораторные занятия.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к практическим и лабораторным занятиям, выполнению тестов. При этом студент использует методические разработки, рекомендуемую литературу, библиотеку электронных модулей в электронной информационной образовательной среде ОРИОКС, Интернет-ресурсы, информационно-справочные системы.

Максимальная эффективность освоения материалов *лекций* достигается при посещении студентом лекционных занятий с последующим повторением пройденного материала.

Для закрепления лекционного материала проводятся *практические занятия*. Для повышения эффективности практических занятий (семинаров) студенту необходимо прочитать конспект лекций по данной тематике и соответствующие главы учебника (учебного пособия). На занятии, под руководством преподавателя, рассматриваются методики решения задач по теоретической и прикладной механике, а также основам конструирования.

После рассмотрения материала практического занятия преподаватель выдает каждому студенту индивидуальное практическое домашнее задание на применение рассмотренных материалов, которое студенты выполняют в рамках СРС в течение заданного времени, получив на практическом занятии методические рекомендации по выполнению. Выполненные задания, в виде отчета с выводами по полученным результатам, присылаются студентами преподавателю и оцениваются баллами. Оценки доводятся до студентов, при этом может быть организована беседа-дискуссия по разбору итогов выполненной работы и анализу ошибок.

Для закрепления знаний, полученных на лекционных занятиях и при выполнении самостоятельной работы, а также для получения навыков исследовательской и практической работы на лабораторном оборудовании и установках, проводятся лабораторные работы. Чтобы хорошо подготовиться к лабораторному занятию, студенту необходимо во время самостоятельной работы в системе ОРИОКС ознакомится с описанием лабораторной работы и оформить теоретическую часть отчета в соответствии с изложенными в описании требованиями. Она включает описание объекта исследований,

методики проводимых экспериментов и таблицы для записи экспериментальных результатов.. К выполнению практической части работы допускается студент, продемонстрировавший знания объекта, методики проведения экспериментов и имеющий заготовленные заранее формы представления экспериментальных результатов.

При выполнении работы в лаборатории студент знакомится с описаниями приборов и оборудования, которые необходимы для проведения эксперимента, после чего в составе рабочей группы (бригады) проводит эксперимент под руководством преподавателя, в соответствии с изложенной методикой проведения эксперимента.

После проведения экспериментов студенты проводят обработку полученных результатов и их анализ, на основе которого формулируются выводы. Затем осуществляется защита выполненной работы (индивидуально или в составе группы) и проставляется зачет. Защита включает предоставление отчета по работе, оформленного в соответствии с требованиями, изложенными в описании к работе, обоснование полученных результатов и сделанных выводов, а также ответы на контрольные вопросы.

Лабораторные работы проводятся, как правило, в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения экспериментальных исследований и при защите полученных результатов.

По завершению изучения дисциплины предусмотрен зачёт с оценкой, при этом оценка итогов учебной деятельности студента основана на балльной накопительной системе. Для сдачи зачёта с оценкой по дисциплине разработан ФОС, включающий тестовые задания и расчётное задание по проверке сформированности компетенции с методическими указаниями его выполнения и критериями оценки достижения формируемой в дисциплине подкомпетенции.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 57 баллов), посещаемость занятий (в сумме до 13 баллов), сдача зачёта с оценкой (в сумме до 30 баллов). Перечень контрольных мероприятий и методика их балльной оценки изложена в методических указаниях для студентов.

Структура и график контрольных мероприятий доступен студенту в OPИOКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Доцент Института НМСТ, к.т.н.

/С.В.Угольников /

Рабочая программа дисциплины «Прикладная механика» по направлению подготовки 27.03.05 «Инноватика»,», направленности (профилям) - «Управление наукоемким производством» разработана в Институте НМСТ и утверждена на заседании Института НМСТ 22.11.2023 года, протокол № 4.

Директор Института НМСТ /С.П.Тимошенков /

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с кафедрой МиУН

Заведующий кафедрой МиУП /С.П. Олейник /

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК /И.М.Никулина

Программа согласована с библиотекой МИЭТ

Директор библиотеки /Г.П.Филиппова /