Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александро Министерство науки и высшего образования Российской Федерации

Должность: И.О. РФенеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 18.06.2025 16:22:51

«Национальный исследовательский университет

Уникальный программный ключ:

«Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Мфсковский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г.Балашов

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Материалы электронной техники»

Направление подготовки – 22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) – «Технологии материалов и наноструктур»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенцийобразовательной программы:

Компетенция ПК-3 «Способен прогнозировать влияние микро- и нано- масштаба на механические, физические, химические и другие свойства веществ и материалов» **сформулирована на основе профессионального стандарта**26.006 «Специалист по разработке наноструктурированных композиционных материалов».

Обобщенная трудовая функция 26.006А [6]Лабораторно-аналитическое сопровождение разработки наноструктурированных композиционных материалов.

Трудовая функция 26.006A/05.6 Определение соответствия наноструктурированных композиционных материалов с новыми свойствами техническому заданию.

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций		
ПК-	Организация и контроль	Знание: основных типов		
3.МЭТСпособность	технологического процесса	материалов электронной		
использовать	выпуска изделий	техники и наноэлектроники.		
современные	микроэлектроники.	Умение: выбирать материалы,		
представления о		исходя из оценки		
влиянии		функциональных свойств		
микроструктуры на		материалов.		
свойства материалов.		Опыт деятельности:		
		прогнозирование структуры и		
		свойств наноматериалов,		
		основываясь на современных		
		представлениях о размерно-		
		зависимых эффектах.		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине.

Изучению дисциплины предшествует формирование компетенций в дисциплинах: «Механика материалов и основы конструирование», «Кристаллография», «Общее материаловедение».

Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются изучением дисциплин «Технология материалов микро-, опто- и наноэлектроники», «Технология и материалы сенсорной и актюаторной техники»,

«Методы исследования наноматериалов и структур» и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		(3E)		Контан	стная ра	абота		та	
Kypc	Семестр	Общая трудоёмкость (Общая трудоёмкость (часы)	Лекции (часы)	Практическая подготовка при	проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
3	6	5	180	32	32		16	64	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Кон	гактная работа		g	
№ и наименование модуля	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
1. Основные понятия и сведения о материалах	4	4	2	17	Контрольная работа по материалам модуля 1
электронной техники.	_		2	17	Защита лабораторной работы
2. Конструкционные и проводниковые материалы.	8	8	4	17	Контрольная работа по материалам модуля 2 Защита лабораторных работ
3. Физические процессы в полупроводниках и их свойства.	14	12	8	15	Контрольная работа по материалам модуля 3 Защита лабораторных работ

	Кон	гактная работа		Ę.		
№ и наименование модуля	Лекции (часы)	Практическая подготовка при проведении пабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
4. Физические процессы в диэлектриках и их свойства.	6	4	2	15	Контрольная работа по материалам модуля 4 Защита лабораторной работы Защита индивидуального задания	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
No Hu	<u> </u>	2 2	
1	2	2	Классификация и особенности материалов электронной техники.
	3	2	Структура и свойства твердых тел.
			Конструкционные материалы в микроэлектронике.
2	4	2	Проводящие материалы. Особенности тонкопленочных металлов.
	5-6	4	Проводящие материалы в микроэлектронике.
	7	2	Классификация полупроводниковых материалов. Собственные и примесные полупроводники. Примеси в полупроводниках.
	8	2	Монокристаллический кремний, его применение, получение, свойства. Примеси и микродефекты. Тенденции в развитии производства полупроводникового кремния.
3	9	2	Поликристаллический кремний. Применение, свойства, получение.
	10	2	Полупроводниковый карбид кремния – применение, свойства, особенности технологии.
	11	2	Полупроводниковые соединения типа $A^{III}B^V$ и $A^{II}B^{VI}$.
	12	2	Материалы и технология устройств фазовой памяти.
	13	2	Термоэлектрические материалы.
	14	2	Диэлектрические материалы. Основные понятия. Свойства диэлектриков. Классификация диэлектрических материалов.
4	15	2	Стекловидные диэлектрические материалы. Стекла. Ситаллы и ситаллоцементы. Керамические материалы.
	16	2	Активные диэлектрики. Сегнето-, пьезо- и пироэлектрики. Электро-,

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
			магнито- и акустооптические материалы. Жидкие кристаллы.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
1	1	2	Классификация и особенности материалов электронной техники.
2	2	2	Конструкционные материалы в микроэлектронике. Проводящие материалы. Особенности тонкопленочных металлов.
	3	2	Проводящие материалы в микроэлектронике.
	4	2	Классификация полупроводниковых материалов. Собственные и примесные полупроводники. Примеси в полупроводниках. Монокристаллический кремний, его применение, получение, свойства. Примеси и микродефекты. Тенденции в развитии производства полупроводникового кремния.
3	3 5		Поликристаллический кремний. Применение, свойства, получение. Полупроводниковый карбид кремния — применение, свойства, особенности технологии.
	6	2	Полупроводниковые соединения типа $A^{III}B^V$ и $A^{II}B^{VI}$. Материалы и технология устройств фазовой памяти.
	7	2	Термоэлектрические материалы.
4	8	2	Диэлектрические материалы. Основные понятия. Свойства диэлектриков. Классификация диэлектрических материалов. Пассивные и активные диэлектрики.

4.3. Практическая подготовка при проведении лабораторных работ

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1	4	Исследование температурной зависимости электропроводности
			материалов электронной техники.
2	2	4	Исследование температурной зависимости коэффициента

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы									
			теплопроводности конструкционных материалов									
	3	4	Исследование температурной зависимости сопротивления металлов.									
	3	4	ТКС металлических пленок.									
	4	4 4	Исследование температурной зависимости подвижности электронов и									
	۲	۲	дырок в полупроводниках.									
3	5	5	5	5	5	5	5	5	5	5	4	Исследование термоэлектрических явлений в материалах,
	7	4	используемых в электронной технике.									
	6	4	Изучение физических состояний полимерных материалов.									
	7	4	Температурная зависимость темновой проводимости в пленках a-Si:H									
4	8	4	Изучение шероховатости поверхности материалов									
4	0	4	оптическим методом.									

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1-4	24	Изучение теоретического материала в объеме лекций
1-4	20	Подготовка к лабораторным работам
1-4	6	Подготовка к опросам на практических занятиях по пройденному материалу.
1-4	2	Подготовка к контрольным работам по пройденным материалам модулей.
1-4	12	Выполнение индивидуального задания по изучению свойств материалов электронной техники и технологий их получения.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Сценарий обучения по дисциплине

Модуль 1 «Основные понятия и сведения о материалах электронной техники»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к лабораторным работам, подготовка к контрольной работе по модулю осуществляется с помощью лекций к модулю №1, лабораторного практикума, материалов для самостоятельной работы студентов.

Модуль 2 «Конструкционные и проводниковые материалы»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к контрольной работе по модулю осуществляется с помощью лекций к модулю №2, лабораторного практикума, материалов для самостоятельной работы студентов.

Модуль 3«Физические процессы в полупроводниках и их свойства»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к лабораторным работам, подготовка к контрольной работе по модулю осуществляется с помощью лекций к модулю №3, лабораторного практикума, материалов для самостоятельной работы студентов.

Модуль 4 «Физические процессы в диэлектриках и их свойства»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к контрольной работе по модулю осуществляется с помощью лекций к модулю №4, лабораторного практикума, материалов для самостоятельной работы студентов.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Материаловедение : Учебник / В.Н. Гадалов, С.В. Сафонов, Д.Н. Романенко [и др.]. М. : АРГАМАК-МЕДИА : ИНФРА-М, 2014. 272 с.
- 2. Материаловедение : Учебник / А.А. Воробьев, Д.А. Жуков, Д.П. Кононов [и др.]. М. : АРГАМАК-МЕДИА : ИНФРА-М, 2014. 304 с.
- 3. Попенко Н.И. Структура реальных кристаллов: Учеб. пособие / Н.И. Попенко, А.В. Железнякова, Ю.И. Шиляева; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2015. 120 с.
- 4. Фазовая память: современное состояние и перспективы использования: Учебнометодическое пособие / А.А. Шерченков, П.И. Лазаренко, А.В. Бабич, С.П. Тимошенков; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2016. 136 с.
- 5. Материалы и элементы электронной техники. Проводники, полупроводники, диэлектрики : Учеб. / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. 2-е изд., испр. СПб. : Лань, 2015. 448 с. URL: https://e.lanbook.com/book/67462 (дата обращения: 16.11.2020).
- 6. Будагян Б.Г. Материалы электронной техники : Лабораторный практикум: В 2-х ч. Ч. 1 / Б.Г. Будагян, А.А. Шерченков. М. : МИЭТ, 2001. 56 с.
- 7. Шерченков А.А. Материалы электронной техники : Лабораторный практикум: В 3-х ч. Ч. 3 / А.А. Шерченков, Ю.И. Штерн. М. : МИЭТ, 2004. 88 с.
- 8. Будагян Б.Г. Материалы электронной техники : Учеб. пособие / Б.Г. Будагян, Ю.И. Штерн, А.А. Шерченков. М. : МИЭТ, 1997. 140 с.

- 9. Будагян Б.Г. Материалы твердотельной электроники : Учеб. пособие / Б.Г. Будагян, А.А. Шерченков. М. : МИЭТ, 1999. 118 с.
- 10. Пасынков В.В. Материалы электронной техники / В.В. Пасынков, В.С. Сорокин. 2-е изд., перераб. и доп. М.: Высшая школа, 1986. 367 с.
- 11. Горелик С.С. Материаловедение полупроводников и диэлектриков / С.С. Горелик, М.Я. Дашевский. М.: Металлургия, 1988. 574 с.
- 12. Шерченков А.А. Физика и технология полупроводниковых преобразователей энергии : Учеб. пособие. Ч. 1 / А.А. Шерченков, Ю.И. Штерн. М. : МИЭТ, 2006. 164 с.
- 13. Сорокин В. С. Материалы и элементы электронной техники. Проводники, полупроводники, диэлектрики : учебник / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. 2-е изд., испр. СПб. : Лань, 2022. 448 с. URL: https://e.lanbook.com/book/212135 (дата обращения: 15.02.2025). ISBN 978-5-8114-2003-2

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 15.02.2025). Режим доступа: для зарегистрир. пользователей.
- 2. Электронные ресурсы Российской государственной библиотеки: сайт. Москва, 1999-2020. URL: http://www.rsl.ru(дата обращения: 15.02.2025).
- 3. **База AmericanChemicalSociety (ACS):** Некоммерческое научное издательство. Американское химическое общество, 2020. URL: http://pubs.acs.org(дата обращения: 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 4. Электронно-библиотечная система издательства «Лань»: сайт. URL: https://e.lanbook.com/(дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 5. **Учебные издания НИУ ИТМО**: сайт. URL: http://books.ifmo.ru/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 6. Электронный научный архив УрФУ: сайт. URL: https://elar.urfu.ru/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 7. **Научно-образовательный портал Znanium**: сайт. URL: https://znanium.ru/ (дата обращения 15.02.2025).—Режим доступа: для авторизованных пользователей МИЭТ.
- 8. Электронно-библиотечная система BOOK.ru: сайт. URL: https://book.ru/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 9. Электронно-библиотечная система РУКОНТ: сайт. URL: https://lib.rucont.ru/search (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (основано на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде).

Применяется модель обучения, предполагающая обязательное присутствие студентов на очных учебных занятиях и самостоятельное выполнение индивидуальных практико-ориентированных заданий с проверкой, обсуждением, доработкой и подведением итогов как на очных учебных занятиях, так с использованием онлайнресурсов и сервисов.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (<u>http://orioks.miet.ru</u>).

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние** электронные ресурсы в формах видеолекций, тестирования в ОРИОКС и ZOOM.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное оборудование	OC Microsoft Windows, MS Office
Учебная аудитория № 4139 «Лаборатория материалов электронной техники»	Компьютеры, Вольтметр универсальный В7-21А, Стенд для измерения сопротивлений металлов (исследование проводниковых свойств), Микроскоп ММУ-3, Блок питания и регулирования, Микровольтнаноамперметр Ф136, Измеритель теплопроводности ИТ-λ-400, Источник питания постоянного тока Б5-46, Вольтметр универсальный В7-21, Источник питания ЛИПСПА-30, Источник питания ВС-24М, Вольтметр РВ-7-22А, Блок питания, Источник питания Маtrix MPS-3003s, Источник питания АКИП Б5.30/3.0, Мультиметр VICTOR VC68B, Проектор LG dx130, Лабораторный комплекс для измерений проводниковых свойств металлов,	OC Microsoft Windows, MS Office

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
	Лабораторный комплекс для исследования температурной зависимости теплопроводности МЭТ, Лабораторный комплекс для исследования термоэлектрических явлений в материалах, используемых в электронной технике, Лабораторный комплекс по определению толщины пленок и глубины залегания p-n перехода методом сферического шлифа.	
Учебная аудитория № 4341	Компьютеры, Модульный спектрометр "PHOTOCORComplex", Дифференциально- сканирующий калориметр DSC 204 F1 Phoenix, Центрифуга MPW-351, Гониометр ЛК-1, Весы MettlerToledoXP 205	OC Microsoft Windows, MS Office
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ.	OC Microsoft Windows, MS Office, Браузер

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-3. МЭТ «Способен использовать современные представления о влиянии микроструктуры на свойства материалов»

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина «Материалы электронной техники» состоит из четырех модулей. Модуль 1 дает студентам основные сведения о материалах электронной техники, основных кассах современных материалов и является базовым для всех последующих модулей. В модулях 2, 3 и 4 даны сведения соответственно о конструкционных и

проводниковых материалах, физических процессах в полупроводниках и их свойствах, физических процессах в диэлектриках и их свойствах.

Студенты должны осуществлять поиск дополнительной информации по темам практических занятий в научных источниках с последующим обсуждением результатов поиска с преподавателем и одногруппниками.

Приступать к лабораторным работам необходимо после изучения теоретического материала, рекомендованного преподавателем в рамках самостоятельной работы и изучения описания соответствующей лабораторной работы. Студенты получают допуск к лабораторной работе после ознакомления с описанием лабораторной работы. Для получения допуска необходимо правильно ответить на контрольные вопросы к теоретической части, приведенные в конце описания лабораторной работы.

Выполнение индивидуального задания на СРС предполагает формирование у обучающихся подкомпетенций по индикаторам умений и приобретения опыта деятельности. Оно включает в себя изучение современных методов для исследований основных параметров функциональных материалов, используемых в энергосберегающих системах.

Контроль выполнения студентами индивидуального задания проводится на семинарах. Студенты выступают с докладом на семинаре, излагая содержание проделанной работы, анализируя различные аспекты освещаемой проблемы, происходит обсуждение информации в формате научной дискуссии.

Студентам рекомендуется активно посещать предусмотренные расписанием консультации с преподавателем.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система,

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре и промежуточный контроль(в сумме - 100 баллов).

На практических занятиях проводятся опросы по материалам лекций модуля, которые дают студентам дополнительные баллы НБС.

Структура и график контрольных мероприятий приведены в журнале успеваемости на OPИOКС (http://orioks.miet.ru/).

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка	
Менее 50	2	
50 – 69	3	
70 - 85	4	
86 – 100	5	

РАЗРАБОТЧИК:

Профессор Института ПМТ, д.т.н., профессор

MS-

_/А.А.Шерченков/

Рабочая программа дисциплины «Материалы электронной техники» по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», направленности (профилю) «Технологии материалов и наноструктур» разработана в Институте перспективных материалов и технологий и утверждена на заседании Ученого совета Института ПМТ 28 февраля 2025 года, протокол № 18.

Директор Института

/С.В.Дубков/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

/И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

____/Т.П.Филиппова/