Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александроминистерство науки и высшего образования Российской Федерации

Должность: И.О. Розедеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 02.07.2025 13:53:26 «Национальный исследовательский университет

Уникальный программный ключ:

«Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Мфсковский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Трехмерное моделирование»

Направление подготовки – 54.03.01 «Дизайн» Направленность (профиль) - «Графический дизайн» Форма обучения - очно-заочная

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенции	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций
ОПК-4 Способен	ОПК-4.ТММ	Знает:
проектировать,	Способен к	 принципы трехмерного
моделировать,	трехмерному	геометрического моделирования
конструировать предметы,	геометрическому	в компьютерной графике;
товары, промышленные	моделированию и	 приемы и инструменты
образцы и коллекции,	визуализации	тонирования (визуализации).
художественные		Умеет:
предметно-		 выбирать и использовать
пространственные		оптимальный набор
комплексы, интерьеры		инструментов при трехмерном
зданий и сооружений		геометрическом моделировании.
архитектурно-		Имеет опыт:
пространственной среды,		 создания трехмерных
объекты ландшафтного		геометрических моделей, с
дизайна, используя		использованием инструментария
линейно-конструктивное		систем автоматизированного
построение, цветовое		проектирования и черчения.
решение композиции,		
современную шрифтовую		
культуру и способы		
проектной графики		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине – Необходимы базовые знания по математике и информатике, а также базовая компьютерная грамотность. Желательны знания по черчению в рамках курса, преподаваемого в средних учебных заведениях. Дисциплина «Трехмерное моделирование» является логическим продолжением «Двухмерное моделирование». Компетенции, полученные при изучении дисциплины «Трехмерное моделирование» будут использованы на занятиях по дисциплинам «Трехмерное моделирование, полигональное визуализация И анимация» И «Проектирование».

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		ость	ОСТЬ	Контан	стная раб	ота	H	
Курс	Семестр	Общая трудоёмк (ЗЕ)	Общая трудоёмко (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	2	72	-	-	8	64	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контакт	ная раб	ота	-	Формы текущего контроля	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа		
1. Трехмерное геометрическое	_	_	8	64	Тестирование, встроенное в тренинг-систему.	
моделирование и визуализация	_				Контроль выполненных индивидуальных заданий.	

4.1. Лекционные занятия

Не предусмотрены.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание				
			Основные понятия трехмерного моделирования. Настройка				
1	1	2	пространства модели и пространства листа. Создание и				
			редактирование трехмерных твердотельных моделей.				

№ модуля дисциплины	дисциплины № практического занятия Объем занятий (часы)		Краткое содержание					
	2 2 3 2		Принципы компоновки чертежа в проекционных связях по трехмерной твердотельной модели.					
			Создание и редактирование сетевых моделей и поверхностей					
	4	2	Назначение материалов и текстур. Моделирование освещения. Визуализация трехмерных объектов и сцен.					

4.3. Лабораторные работы

Не предусмотрены.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС								
	6	Выполнение заданий тренинг-системы. Раздел 5. Тема «Трехмерное моделирование».								
	6	Выполнение индивидуального задания на тему: «Построение простого трехмерно твердотельного объекта по натуральной модели».								
	6	Выполнение индивидуального задания на тему: «Построение трехмерно твердотельного объекта по изометрии. Визуальные стили».								
1	6	Выполнение индивидуального задания на тему: «Построение трехмернотвердотельного объекта по двум проекциям».								
	6	Выполнение индивидуального задания на тему: «Построение трехмерно твердотельного объекта по трем проекциям».								
	6	Выполнение индивидуального задания на тему: «Формирование чертежно по трехмерной модели. Пространство модели, пространство листа».								
	8	Выполнение индивидуального задания на тему: «Формирование моделей поверхностей. Выдавливание, оболочка, спираль и пр.».								
	4	Выполнение индивидуального задания на тему: «Компоновка чертежа в проекционных связях по трехмерной твердотельной модели»								

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	4	Выполнение индивидуального задания на тему: «Визуализация модели. Освещение, материалы, текстура, фон».
	12	Выполнение итоговой работы на тему: «Формирование реалистичной сцены».

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрено.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL:, http://orioks.miet.ru/):

Модуль 1, 2.

- ✓ Сценарий обучения по дисциплине
- ✓ Соколова Т.Ю. Электронная тренинг-система «3D моделирование» медиатека Вычислительного центра цифрового дизайна.
- ✓ Методические указания студентам по выполнению итогового задания по дисциплине «Трехмерное моделирование».
 - ✓ Видеолекции по выполнению заданий

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

1. Кувшинов, Н. С.Проектирование в Платформе nanoCAD с модулями «Механика» и «3D» : учебное пособие / Н. С. Кувшинов. - Москва : ДМК Пресс, 2023. - 384 с. - (САПР-платформа nanoCAD). - Электронная версия книги (pdf) предоставлена безвозмездно компанией Нанософт. - URL: https://www.nanocad.ru/products/platforma/learning/#product-detail-tabs (дата обращения: 14.08.2024). - ISBN 978-5-93700-249-5

2. Кувшинов, Н. С. nanoCAD Механика. Инженерная 2D и 3D компьютерная графика: Учебное пособие / Н. С. Кувшинов. - Москва: ДМК Пресс, 2020. - 532 с. - (САПР-платформа nanoCAD). - Электронная версия книги (pdf) предоставлена безвозмездно компанией Нанософт. - URL: https://www.nanocad.ru/products/platforma/learning/#product-detail-tabs (дата

URL: https://www.nanocad.ru/products/platforma/learning/#product-detail-tabs (дата обращения: 14.08.2024). - ISBN 978-5-97060-839-5

3. Соколова Т.Ю. AutoCAD 2016. Двухмерное и трехмерное моделирование. Учебный курс - М.: ДМК Пресс, 2016. - 754 с. – URL: https://e.lanbook.com/book/82811 (дата обращения: 01.09.2024). - Режим доступа: для авторизованных пользователей.

Периодические издания

- 1. CADmaster : электронный журнал для профессионалов в области САПР / ЗАО "ЛИР консалтинг". Москва : ЛИР консалтинг, 2000 . URL: http://www.cadmaster.ru/ (дата обращения: 30.06.2024). Режим доступа: свободный. Текст : электронный.
- 2. САПР И ГРАФИКА : производственно-практическое издание / Издательский дом КомпьютерПресс. Москва : ИД КомпьютерПресс, 1996 . URL: https://sapr.ru/ (дата обращения: 12.08.2024). Режим доступа: свободный. ISSN 1560-4640. Текст : электронный.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека: сайт. Москва, 2000 . URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 21.08.2024). Режим доступа: для зарегистрированных пользователей
- 2. NanoCAD: справка // NanoCAD: сайт. URL: https://nanocad.com/learning/online-help/?ysclid=m03sxw23ph908538042 (дата обращения: 21.08.2024). Режим доступа: свободный.
- 3. NanoCAD: видеоуроки // NanoCAD: сайт. URL: https://nanocad.com/learning/video/ (дата обращения: 21.08.2024). Режим доступа: свободный.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, основанное на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде.

При проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы:

- -Авторская электронная Тренинг-система изучения среды изучения среды систем автоматизированного проектирования и черчения, включающая в себя тематические контрольно-обучающие тесты.
 - -Записи обучающих видео по выполнению индивидуальных заданий.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (<u>http://orioks.miet.ru</u>).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел OPUOKC «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения			
Учебная аудитория «Вычислительный центр цифрового дизайна»	Специализированная мебель (место преподавателя, посадочные места для студентов) Материально-техническое оснащение: АРМ (автоматизированное рабочее место) для графики и дизайна в составе: Системный блок КОМР-ІТ Ваѕе, клавиатура, мышь Logitech, гарнитура Sven, монитор — 31 шт., телевизор 65"LG (RUS) 65NANO766A.ARUB в комплекте — 2 шт., VR-шлем виртуальной реальности Oculus Quest 2 с кабелем Oculus Link — 4 шт., МФУ Хегох В305 МFР (В305V-DNI) — 1 шт.	Операционная система Windows; Microsoft Office. интернет-браузер; Acrobat Reader DC. NanoCAD			
Помещение для самостоятельной работы (компьютерный класс библиотеки).	Материально-техническое оснащение: 18 компьютеров, объединенных в сеть, с выходом в Интернет и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	Операционная система Windows, Microsoft Office, браузер			

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

Фонд оценочных средств по подкомпетенции ОПК-4.ТММ «Способен к трехмерному геометрическому моделированию и визуализации» представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина предполагает «потоковое» обучение, при котором студенты после изучения интерфейса и инструментария среды систем автоматизированного проектирования и черчения, с использованием тренинг-системы, выполняют тестовые

работы для демонстрации усвоенного материала, а также ряд индивидуальных практических заданий.

Практические занятия проходят в мультимедийном компьютерном классе с установленным программным обеспечением и специализированной авторской компьютерной тренинг-системой. Тренинг-система содержит набор обучающих макетфайлов и тестирующих файлов. Тестирующие файлы, внедренные в тематический набор макет-файлов, позволяют обучающемуся закрепить пройденный материал, определить степень усвоения информации и принять решение: продолжать дальше изучение программы или вернуться к предыдущим макет-файлам для повторного изучения.

При выполнении индивидуальных практических заданий тренинг-система может быть использована как методическое пособие и справочник.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к практическим занятиям на основе тренинг-системы, использование основной и дополнительной литературы, а также интернет-ресурсов и профессиональных баз данных.

Проверка сформированности опыта деятельности по созданию трехмерных геометрических моделей проводится в рамках итогового индивидуального практического задания «Моделирование трехмерной геометрической сцены с визуализацией по предложенному заданию».

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 84 балла), активность в семестре (в сумме 16 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Директор Института ЦД, доцент

/ Т. Ю. Соколова /

Рабочая программа дисциплины «Трехмерное моделирование» по направлению подготовки 54.03.01 «Дизайн», направленности (профилю) — «Графический дизайн» (очно-заочная форма обучения) разработана Институтом цифрового дизайна и утверждена Ученым советом Института ЦД 02 июля 2024 года, протокол № 11.

Директор Института ЦД

Am /

/ Т.Ю.Соколова /

ЛИСТ СОГЛАСОВАНИЯ

Рабочая	программа	согласована	c	Центром	подготовки	К	аккредитации	И	независимой
оценки к	ачества								

Начальник АНОК

/ И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

My

/ Т.П.Филиппова /