Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по УР

А.Г. Балашов

"AS" coured le

2023

ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Практические основы программирования для разработки САПР»

1. Цель реализации программы

Формирование специальных знаний в области практического программирования при разработке современных САПР, которые позволят понимать основные принципы и особенности разработки архитектуры, включая используемые алгоритмы и модели данных, основные инструменты и среду разработки, а также применять изученные подходы на практике с учетом специфики этапов разработки, жизненного цикла рассматриваемых продуктов и организации работы команды.

Данная программа повышения квалификации реализуется в рамках деятельности базовой кафедры «Технологии и конструирования ИС» (БК ТКИС) компании ООО «НМ-Тех», входящей в организационную структуру Института интегральной электроники (ИнЭл) МИЭТ.

2. Характеристика профессиональной деятельности и (или) квалификации

Область профессиональной деятельности: связь, информационные и коммуникационные технологии
Вид экономической деятельности: деятельность в области информации и связи Укрупненная группа специальностей: 09.00.00, 11.00.00

3. Требования к результатам обучения

Формируемая профессиональная компетенция — знание основ программирования для разработки САПР и умение применять их на практике при реализации современных программных систем.

В результате освоения данной программы слушатель будет:

Знать основные принципы и особенности разработки архитектуры САПР, используемые алгоритмы и модели данных.

Уметь формировать среду разработки и применять основные инструменты по разработке САПР, а также организовывать работу команды.

Иметь практический опыт реализации изученных алгоритмов и моделей данных с применением языка высокого уровня C++.

4. Содержание программы Учебный план

программы повышения квалификации

«Практические основы программирования для разработки САПР»

Категория слушателей – сотрудники профильных предприятий, студенты выпускных курсов бакалавриата и магистратуры по УГН 09.00.00, 11.00.00, лица имеющие высшее образование или СПО.

Срок обучения – 37 часов.

Форма обучения: очная.

				Образовател			
	Наименование разделов / модулей		Ауди	торных	Самосто ятельна я работа	ьные технологии,	
№ п/п		Всего, час	Лекции	Практичес- кие и лаборатор- ные занятия		в том числе ЭО и (или) ДОТ	
1.	Применение САПР для проектирования СБИС	2	2	0	0		
2.	Среда разработки и основные инструменты	6	2	4	0	ß	
3.	Архитектура САПР	18	6	8	4		
4.	Применение изученных подходов в реальных системах САПР	10	6	4	0	,	
5.	Итоговая аттестация	1	зачет				
	Всего	37	16	16	4		

Учебно-тематический план программы повышения квалификации

«Практические основы программирования для разработки САПР»

_			В том числ		ле Самостоя	Образовате льные	
№ п/п	Наименование тем разделов / модулей	Всего,	Лекции	Практи ческие и лаборат орные занятия	тельная работа	технологии в том числе ЭО и (или) ДОТ	
1.	Применение САПР для проектирования СБИС	2	2	0	0		
1.1	Вводная. Применение САПР на этапах проектирования СБИС.	1	67 1	0	0		
1.2	Процесс и этапы разработки САПР.	1	1	0	0		
2.	Среда разработки и основные инструменты	6	2	4	0	-	
2.1	Языки программирования.	1	1	0	0		
2.2	Среда разработки для программирования на C/C++, основные инструменты	5	1	4	0		
3	Архитектура САПР	18	6	8	4		
3.1	Обобщённая архитектура САПР. Модели данных и алгоритмы	8	2	4	2	-	
3.2	Оптимизационные алгоритмы	4	2	0	2		
3.3	Реализация моделей и алгоритмов в виде C++ библиотек	6	2	4	0		
4	Применение изученных подходов в реальных системах САПР	10	6	4	0		
4.1	Применение изученных подходов в реальных системах САПР для разработки топологии стандартных ячеек	8	4	4	0		
4.2	Сжатие и миграция топологии	. 2	2	0	0		
5.	Итоговая аттестация	1			Зачет		
	Bcero	37	16	16	4		

Календарный учебный график

Календарный учебный график составляется в форме расписания занятий при наборе группы и прилагается к программе повышения квалификации.

Учебная программа повышения квалификации

«Практические основы программирования для разработки САПР»

Раздел 1. Применение САПР для проектирования СБИС

Тема 1.1. Вводная. Применение САПР на этапах проектирования СБИС.

Развитие САПР микроэлектроники. Маршрут проектирования цифровых ИС. Специализированные САПР.

Тема 1.2. Процесс и этапы разработки САПР. Организация командной работы. Оптимизация процесса разработки ПО. Основные подходы и методологии разработки ПО.

Раздел 2. Среда разработки и основные инструменты

Тема 2.1. Языки программирования.

Тема 2.2. Среда разработки для программирования на C/C++, основные инструменты.

Система сборки. Отладчик. Интегрированная среда разработки. Тестирование. Автоматизация сборки/тестирования. Непрерывная интеграция/поставка. Контроль версий (Git). Система отслеживания ошибок (багтрекинг).

Перечень лабораторных работ

Номер	Наименование лабораторной работы	Кол-во
темы	Паннопованно наобраторной работы	часов
2.2	Настройка среды разработки	2
2.2	Разработка и тестирование простых классов для работы с	2
	геометрическими объектами	
	Bcero:	4

Раздел 3. Архитектура САПР

Тема 3.1. Обобщённая архитектура САПР. Модели данных и алгоритмы

Топология ИС: виды, фигуры, слои, иерархия, приборы, электрическая связность со схемой. Графы и алгоритмы на графах. Геометрические объекты и алгоритмы. Диаграмма Вороного.

Тема 3.2. Оптимизационные алгоритмы

Задачи и методы оптимизации. Линейное программирование. Динамическое программирование. Метод ветвей и границ. Моделирование отжига.

Тема 3.3. Реализация моделей и алгоритмов в виде С++ библиотек

Обзор базовых библиотек C++. STL: типовые контейнеры, итераторы и интервалы, типовые алгоритмы, символьные строки. Boost: обзор библиотек, библиотека для работы с графами, библиотека геометрических шаблонов.

Перечень лабораторных работ

Номер	Наименование лабораторной работы	Кол-во
темы		часов
3.1	Вычислительная сложность алгоритмов	4
3.3	Разработка эффективных алгоритмов для работы с геометрическими объектами	4
	Bcero:	8

Самостоятельная работа студентов

№ модуля	Объем	Вид СРС		
дисциплины	занятий			
	(часы)			
3	4	Выполнение практико-ориентированного задания		
		(разработка ПО модели данных и оптимизационного		
		алгоритма) на опыт деятельности		

Раздел 4. Применение изученных подходов в реальных системах САПР

Тема 4.1. Применение изученных подходов в реальных системах САПР для разработки топологии стандартных ячеек

Технологический процесс и технологические ограничения. Особенности топологии стандартных ячеек. Подходы к проектированию библиотек стандартных ячеек. Критерии качества топологии. Маршрут синтеза топологии ячейки. Алгоритмы размещения и трассировки стандартных ячеек.

Тема 4.2. Сжатие и миграция топологии

Задачи сжатия и миграции топологии. Сжатие на основе графа ограничений. Иерархическое сжатие. Учет эффекта электромиграции. Изменение параметров приборов под контролем схемы.

Перечень лабораторных работ

Номер	Наименование лабораторной работы	
темы		
4.1	Разработка технологических ограничений для алгоритма	2
	сжатия топологии	
4.1	Визуализация и анализ результатов работы алгоритма сжатия	2
	топологии	
	Bcero:	4

4. Материально-технические условия реализации программы

4.1 Очная форма обучения

Наименование	Вид занятия	Наименование оборудования,
специализированных		программного обеспечения
аудиторий кабинетов,		
лабораторий		
Мультимедийная	Лекции	Оборудование: компьютер,
аудитория		мультимедийный проектор, доска
		ΠΟ: MicrosoftPowerPoint, Word;
		AdobeReader
Вычислительный класс	Практические и	ПЭВМ Intel LGA1700 Core i5-12500 с
БК ТКИС (базовой	лабораторные	мониторами Samsung
кафедры «Технологии и	занятия	ПО: OC Linux CentOS, компилятор C++
конструирования ИС»)		gcc 12.1.0, интерпретатор Python 3.11.0
Помещение для	Самостоятельн	Компьютерная техника с
самостоятельной работы	ая работа	возможностью подключения к сети
		«Интернет» и обеспечением доступа в
		ОРИОКС

5. Учебно-методическое обеспечение программы

- 1. Кристофидес Н. Теория графов. Алгоритмический подход. М.: Мир, 1978. 432 с.
- 2. Рейнгольд Э., Нивергельт Ю. Део Н. Комбинаторные алгоритмы. Теория и практика. М.: Мир, 1980.
- 3. Ласло М. Вычислительная геометрия и компьютерная графика на C++. М.: БИНОМ, 1997. 304 с.
- 4. Ф. Препарата, М. Шеймос. Вычислительная геометрия: Введение. М.: Мир, 1989.

- 5. R. Sedgewick. Algorithms in C++. Addison-Wesley publishing Company, 1992.
- 6. Sherwani N. Algorithm for the VLSI Physical Design Automation. Second Edition. Kluwer Academic Publishers, 1995.
- 7. Steven S. Skiena. The Algorithm Design Manual. Springer, 2020. 810 p.
- 8. Michael Reinhardt. Automatic layout modification. Kluwer Academic Publishers, 2002.

6. Оценка качества освоения программы

Оценка качества освоения программы включает итоговую аттестацию обучающихся в форме зачета, состоящего из двух частей:

1. Устный опрос для проверки знаний и умений. Перечень вопросов приведен в приложении 1.

Показатель оценивания оценки достижения показателя		Условия начисления баллов по критерию	Количество баллов
Дан устный	Правильность	Ответ дан верно и в полном объеме на 2	20 баллов
ответ на	ответов на	вопроса	
вопросы	вопросы	Ответы даны верно, но есть недочеты по каждому пункту	15 баллов
		Ответ дан верно только на один вопрос	10 баллов
		Ответ дан неверно по всем вопросам	0 баллов
Суммарный б	0-20		

2. Задания на опыт деятельности

Необходимо нарисовать и описать принцип работы алгоритма.

Варианты:

- 1. Обход графа в глубину;
- 2. Обход графа в ширину;
- 3. Поиск кратчайшего пути в графе;
- 4. Поиск точек, принадлежащих региону сеточным методом;
- 5. Метод сканирующей линии

Показатель оценки	Критерий оценивания достижения показателя	Условия начисления баллов по критерию	Количество баллов
		Описание полностью корректно	5
Представлено описание и принцип	Корректность описания	Описание корректно, но есть неточности	3
работы алгоритма		Описание не соответствует заданию либо отсутствует	0
	0-5		

Слушатель считается аттестованным, и компетенция сформированной, если:

- знает основные термины и понятия курса;
- может последовательно изложить материал курса;
- дает полные ответы на вопросы при сдаче зачета;
- при ответе на 2 вопроса набрал не менее 10 баллов.
- при выполнении задания на опыт набрал не менее 3 баллов.

7. Составители программы

Старший преподаватель института ИнЭл

7 --- 7

Доцент института ИнЭл

Доцент института ИнЭл

В.С. Калашников

А.А. Миндеева

А.В. Коршунов

Согласовано:

Директор ДРОП

Н.Ю. Соколова

Директор института ИнЭл

В.В. Лосев

Представитель профессионального сообщества:

Директор НТЦ ООО "НМ-Тех"

М.Ю. Семенов

Вопросы на знания

- 1. Определение графа и его виды. Способы представления графа.
- 2. Алгоритмы обхода графа и их особенности.
- 3. Изоморфизм графов: определение и основные понятия, особенности.
- 4. Виды геометрических объектов и операции над ними.
- 5. Геометрические алгоритмы.
- 6. Диаграмма Вороного: определение и основные понятия.
- 7. Классификация методов оптимизации.
- 8. Линейное программирование: общая формулировка и примеры задач.
- 9. Динамическое программирование: общая формулировка и примеры задач.
- 10. Метод ветвей и границ: общая формулировка и примеры задач.

Вопросы на умения

- 1. Перечислить состав стандартной библиотеки шаблонов STL.
- 2. Перечислить типовые контейнеры общего применения библиотеки STL и их назначение.
- 3. Перечислить основные категории итераторов библиотеки STL и операции с ними.
- 4. Перечислить типовые алгоритмы общего применения библиотеки STL.
- 5. Описать состав и основные функции библиотеки Boost для работы с графами.
- 6. Перечислить основные алгоритмы на графах библиотеки Boost и примеры использования.
- 7. Назвать основной состав геометрической библиотеки Boost.
- 8. Перечислить базовые операции геометрической библиотеки Boost.
- 9. Перечислить основные инструменты, используемые для разработки программного обеспечения.
- 10. Назвать основные подходы и методологии разработки программного обеспечения и их особенности.