Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александров Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Образования Дата подписания: 01.07.2025 11:02:40

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Лазерные технологии в микроэлектронике»

Направление подготовки - 22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) - «Технологии материалов микроэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция **ПК-5**«Способен разрабатывать, внедрять новые и вырабатывать рекомендаций по корректировке существующих технологических процессов выпуска изделий микро- и наноэлектроники» сформулирована на основе профессионального стандарта **40.058** «Инженер-технолог по производству изделий микроэлектроники»

Обобщенная трудовая функция - В[6] Разработка единичных технологических процессов и рекомендаций по устранению и предупреждению брака в производстве изделий микроэлектроники

Трудовая функция - В/02.6Разработка единичных технологических процессов изготовления изделий микроэлектроники

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-5.КОЭ	Технологический тип задач:	Знание основных методов и
Способен	- Разработка, внедрение новых	принципов работы лазерных
разрабатывать	и выработка рекомендаций по	технологий в
технологию	корректировке существующих	микроэлектронике
формирования	технологических процессов	Умение разрабатывать
микро-, нано- и	выпуска изделий	технологический маршрут
оптоэлектронных	микроэлектроники	изготовления микро-, нано- и
структур с	- Проведение технологических	оптоэлектронных структур с
использованием	процессов и контроль	использованием лазерных
лазерных	параметров экспериментальных	технологий.
технологий	образцов приборов квантовой	устройств квантово-оптической
	электроники и фотоники на	электроники с заданными
	основе наноструктурных	характеристиками.
	материалов	Опыт разработки и внедрения
		лазерных технологий в
		формирование микро-, нано- и
		оптоэлектронных структур

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине - процесс изучения модуля направлен на формирование профессиональных компетенций. Изучению модуля предшествует формирование компетенций в дисциплинах: «Математика», «Физика», «Материалы и устройства фотоники». Является предшествующей для прохождения практики и выполнения выпускной работы.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контан	стная работа			
Kypc	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
3	5	3	108	16	16	16	60	ЗаО, КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конт	актная раб	ота		- Z	
№ и наименование модуля	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа	В том числе - Практическая подготовка при выполнении курсовой работы (проекта)	Формы текущего контроля
1. Лазерная						Опрос
обработка						Защита этапа Курсового
материалов и	6	-	2	10	6	проекта
контроль параметров						Тестирование 1
						Опрос
2. Современные						Защита лабораторных работ
технологии		10		1.4	10	1-3
лазерного	6	12	2	14	10	Защита этапа Курсового
применения в						проекта
производстве						Тестирование 2
3. Применение						Опрос
лазерных	4	4	12	10	10	Защита лабораторной
технологий в						работы 4

	Конта	актная раб	ота		, n	
№ и наименование модуля	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа	В том числе - Практическая подготовка при выполнении курсовой работы (проекта)	Формы текущего контроля
микро-, нано- и						
опто-						Защита курсового проекта
электронике						

4.1. Лекционные занятия

№ модуля	дисциплины № лекции	Объем занятий (часы)	Краткое содержание
			Вводная лекция. Взаимодействие лазерного излучения с веществом
			1.1. Современные направления применения лазерного излучения в
	1	2	микроэлектронике.
			1.2. Физические основы лазерного излучения.
			1.3. Механизмы поглощения и отражения, эффекты термической и механической обработки материалов
			Обработка материалов лазерным излучением
			2.1. Основы фокусировки лазерного излучения, Влияние геометрии
			фокуса на интенсивность излучения
1	2	2	2.2. Оптические системы для фокусировки лазера
			2.3. Механизмы воздействия: абляция, плавление, испарение
			2.4. Применение различных лазеров в зависимости от материала и
			задач.
			Методы контроля результатов лазерного воздействия:
			3.1. Оптическая и электронная микроскопии
	2		3.2. Рамановская спектроскопия
	3	2	3.3. Микроскопия поверхности, геометрических параметров и
			шероховатости
			3.4.Рентгеновская дифракция
2	4	2	Лазерные технологии скрайбирования, маркировки, сварки и резки:

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание	
			принципы и применение	
	6	2	Аддитивные технологии 5.1. Типы лазеров, используемых в аддитивных технологиях 5.2. Виды лазерных аддитивных технологий 5.3. Применение лазерных аддитивных технологий 5.4. Преимущества и ограничения лазерных аддитивных технологий Лазерное осаждение и модификация материалов: 6.1.Импульсное лазерное нанесение пленок (PLD) 6.2. Локальный перенос материалов. 6.3.Деметаллизация. 6.4. Лазерный отжиг. 6.5. Легирование	
3	7 8	2	Изготовление устройств при помощи лазерного воздействия 7.1. Лазерная модификация поверхности: метаповерхности, лазерно- индуцированные периодические поверхностные структуры 7.2. Лазерная литография для создания наноструктур: фотонные интегральные схемы, Изготовление устройств при помощи лазерного воздействия 8.1 Устройства визуализации и отображения информации 8.2 Лазерная голография	

4.2. Практические занятия

№ модуля писнин пины	жеский практического занятия	Объем занятий (часы)	Наименование занятия
1	1	2	Решение уравнений теплопроводности для подбора режима лазерного воздействия на материалы. Распределение температуры в материалах при лазерной абляции и резке
2	2	2	Семинар-дискуссия «Современные лазерныетехнологии в производстве»
3	3	2	Проверка выполнения Теоретической части Курсовой проектной работы (контроль 1)
3	4	2	Проверка выполнения Технологической части Курсовой проектной работы (контроль 2)

№ модуля	дисциплины	№ практического	занятия	Объем занятий	(часы)	Наименование занятия
		5		2		Проверка выполнения Материаловедческой части Курсовой проектной
						работы (контроль 3)
		6		2		Проверка выполнения Инновационной части Курсовой проектной
		U		2		работы (контроль 4)
		7		2		Семинар-конференция 1 «Защита Курсовых проектных работ»
		8		2		Семинар-конференция 2 «Защита Курсовых проектных работ»

4.3. Практическая подготовка при проведении лабораторных работ

№ модуля	дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
		1	4	Определение режимов скрайбирования кремния при помощи лазера с фемтосекундной длительностью импульса
2		2	4	Изучение технологии лазерной наплавки металлов
		3	4	Применение лазерной литографии для формирования наноструктур
3		4	4	Формирование голографических элементов с применением фоточувствительных материалов

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	6	Проработка теоретического материала (Лекции 1-3)
1	2	Подготовка к тестированию по материалам Модуля 1
	6	Практическая подготовка Выполнение задания Курсовой проекта

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	2	Подготовка к сдаче итогового зачета по материалам Модуля 1
	2	Проработка теоретического материала (Лекции 4-6)
	3	Подготовка к лабораторным работам 1-3
	3	Подготовка к защите лабораторных работ 1-3
	2	Подготовка к семинару-дискуссии ««Современные лазерные технологии в
2	2	производстве»
	2	Подготовка к тестированию по материалам Модуля 2
	10	Практическая подготовка
	10	Выполнение задания Курсовой проектной работы
	2	Подготовка к сдаче итогового зачета по материалам Модуля 2
	4	Проработка теоретического материала (Лекции 7-8)
	1	Подготовка к лабораторной работе 4
	2	Подготовка к защите лабораторной работы 4
3	8	Практическая подготовка
	<u> </u>	Выполнение задания Курсовой проектной работы
	2	Защита Курсовой проектной работы
	3	Подготовка к сдаче итогового зачета по материалам Модуля 3

4.5. Примерная тематика курсовых работ (проектов)

- 1. Оптические материалы. Оксид кремния. Кварцевые стекла. Силикатные стекла. Оптические свойства. Особенности применения в оптике и нанофотонике. Спектральные характеристики.
- 2. Оптические материалы. Боратные, фосфатные и халькогенидные стекла. Свойства, особенности применения в оптике и нанофотонике. Спектральные характеристики.
- 3. Оптические эффекты в тонких пленках на границе раздела пленка/воздух, пленка/подложка.
- 4. Распространение света в многослойных тонкопленочных структурах.
- 5. Метаповерхности. Особенности. Технология изготовления. Область применения.
- 6. Современное состояние лазерных технологий и передовые научные достижения. Классические и перспективные области применения лазеров. Мониторинговое исследование мирового рынка фотоники и лазерных технологий.
- 7. Оптические волноводы. Принцип работы. Распространение света в волноводе.
- 8. Оптические кольцевые резонаторы. Принцип работы. Области применений.
- 9. Оптические дисплеи. Виды оптических дисплеев. Эволюция дисплеев, современное состояние и принцип работы. Перспективные области применения и передовые научные достижения.

- 10. Современный рынок оптических дисплеев. Сравнение LCD, LED, OLED, AMOLED и QLED дисплеев: технология изготовления, характеристики формируемого изображения, производительность, энергопотребление и т.д.
- 11. Оптические отражающие дисплеи: технология E-ink. Принцип работы и современное состояние. Достоинства, недостатки и перспективы применения.
- 12. Голография. Современное состояние и принцип работы. Достоинства и недостатки. Классические и перспективные области применения. Анализ рынка.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: , http://orioks.miet.ru/):

Модули 1-3:

- **1.** Учебно-методические материалы для самостоятельного изучения тематик модулей 1-3 в объеме лекций и семинаров, в том числе для подготовки к тестированиям, устному опросу и зачету.
- **2.** Учебно-методические материалы для самостоятельного изучения теории при подготовке к выполнению лабораторных работ 1-3, а также для обработки полученных результатов и защиты лабораторной работы.
- 3. Учебно-методические материалы для самостоятельного выполнения практического проектного задания и творческого индивидуального задания.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Киселев. Г.Л. Квантовая и оптическая электроника: Учеб. пособие / Г. Л. Киселев. 4-е изд., стер. СПб.: Лань, 2020. 316 с. (Учебник для вузов. Специальная литература). URL: https://e.lanbook.com/book/130188 (дата обращения: 09.04.2024). Режим доступа: свободный. Текст: электронный.- ISBN 978-5-8114-4986-6.
- 2. Щука. А. А. Электроника: В 4-х ч.: Учебник для академического бакалавриата. Ч. 3: Квантовая и оптическая электроника / А.А. Щука; Под ред. А.С. Сигова. 2-е изд., испр. и доп. М.: Юрайт, 2016. 117 с. (Бакалавр. Академический курс). ISBN 978-5-9916-7116-3 (ч. III); ISBN 978-5-9916-7521-5: 349-00.
- 3. Ландсберг Г.С. Оптика: Учеб. пособие / Г.С. Ландсберг. 7-е изд. М.: Физматлит, 2017. 852 с. URL: https://e.lanbook.com/book/105019 (дата обращения: 12.11.2024). Режим доступа: свободный. Текст: электронный.- ISBN 978-5-9221-1742-5.
- 4. Пихтин А. Н. Квантовая и оптическая электроника: Учеб. для вузов / А.Н. Пихтин. М: Абрис, 2012. 656 с. ISBN 978-5-4372-0004-9.
- 5. Игнатов А.Н. Оптоэлектроника и нанофотоника: Учеб. пособие / А.Н. Игнатов. СПб.: Лань, 2011. 544 с. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1136-8

6. Вейко В.П. Лазерные микро- и нанотехнологии в микроэлектроники: Опорный конспект лекций / В.П. Вейко. - СПб. : СПб НИУ ИТМО, 2011. - 141 с. - URL : http://books.ifmo.ru/book/679/lazernye_mikro_i_nanotehnologii_v_mikroelektronike.htm (дата обращения: 23.05.2024. - Режим доступа: свободный. - Текст: электронный.

Периодические издания

1. ФОТОНИКА : научно-технический журнал / РИЦ Техносфера. - Москва : Техносфера, 2006 - . - URL: http://www.photonics.su/ (дата обращения: 21.04.2024). - ISSN 1993-7296

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. **База научных данных OpticalSocietyofAmerica (OSA):** сайт. США, 2010. URL: http://opticsinfobase.org. (дата обращения: 10.09.2024). Режим доступа: для зарегистрир. пользователей.
- 2. **OpticsExpress:** сайт. США, 1997. URL: http://www.opticsexpress.org. (дата обращения: 10.09.2024). Режим доступа: для зарегистрир. пользователей.
- 3. **РУКОНТ**: Национальный цифровой ресурс : Электронно-библиотечная система : сайт. Москва : Сколково, 2010 . URL: https://lib.rucont.ru/search (дата обращения: 20.09.2024). Режим доступа: для авториз. пользователей МИЭТ.
- 4. **Лань:** электронно-библиотечная система. Санкт-Петербург, 2011. URL: https://e.lanbook.com/(дата обращения: 21.09.2024). Режим доступа: для авториз. пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (реализовывается с применением электронного обучения и дистанционных образовательных технологий).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Применяются следующие модели обучения: работа в малых группах, семинарыконференции.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел OPИOKC «Домашние задания», электронная почта преподавателя.

При проведении занятий и для самостоятельной работы используются **внешние** электронные ресурсы в формах видео-лекций:

- 1) «Лазеры, оптоэлектроника и биофотоника в XXI веке». Учебный фильм (on-line лекция), Самарский Государственный университет. URL: https://www.youtube.com/watch?v=k4bBmSan6P8
- 2) «Светодиодные технологии и оптоэлектроника». Учебный фильм, Университет ИТМО. URL: https://www.youtube.com/watch?v=sdnIfJEn-QY
- 3) «Введение в оптоэлектронику». Учебный фильм (on-line лекция). URL: https://www.youtube.com/watch?v=NYmQq8Be8E4
- 4) «Удивительный мир оптики и лазеров». Открытая лекция, Городской методический центр Москвы. URL: https://www.youtube.com/watch?v=CerQ8K3i3fs
- 5) «Резонаторы и волноводы». On-line лекция. URL: https://www.youtube.com/watch?v=-
 НудА6DKBY4

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория № 4136 «Лаборатория микроскопии»	Проектор Epson EB- G5600,мультимедийный комплекс, компьютер, принтер	OC Windows MS Office браузер
Учебная аудитория № 3345 «Лаборатория общей химии и ФХМА»	Спектрофотометр СФ-56	Не требуется
Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	OC Microsoft Windows Microsoft Office браузер Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-5.КО**Э «Способен разрабатывать технологию формирования изделия квантово-оптической электроники».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина состоит из 3 тематических модулей: модуль 1 – «Лазерная обработка материалов и контроль параметров», модуль 2 – «Современные технологии лазерного применения в производстве», модуль 3 – «Применение лазерных технологий в микро-, нано- и опто-электронике».

«Модуль 1» посвящен теоретическим основам лазерной обработки материалов, а также методам контроля результатов лазерного излучения.

В «Модуле 2»рассматриваются современные лазерные технологии, используемые в промышленности для различных производственных процессов. Обсуждаются технологии лазерной сварки, резки, скрайбирования, маркировки, лазерного осаждения, а также аддитивные технологии.

«Модуль 3»фокусируется на применении лазерных технологий в микроэлектронике, наноэлектронике и оптоэлектронике. Рассматриваются лазерные методы создания микрои наноразмерных структур, метаповерхностей, а также методы лазерной литографии.

В процессе освоения дисциплины студенты самостоятельно готовят и выполняют предусмотренные контрольные задания на проверку усвоения необходимых знаний в форме тестирования, на проверку умений – в форме защиты лабораторных работ, на проверку опыта деятельности – в форме защиты (представления) индивидуального задания, результат выполнения которых отражается в накопительной балльной системе.

К каждой лабораторной работе необходимо готовить конспект, материалы которого будут использоваться при выполнении лабораторной работы и защите ее результатов.

Тестирование охватывает тематики, освещенные в модулях 1-3, и направлено на закрепление и проверку теоретических знаний в области лазерных технологий, оптики и нанофотоники, оптических материалов и наноструктур, а также на проверку освоения технологических аспектов изготовления устройств интегральной и волноводной оптики.

Практико-ориентированное задание сконцентрировано на формировании навыка научно-технической разработки в производстве полупроводниковых приборов и систем с использованием нанотехнологий и формированию умения разрабатывать процессы модификации поверхности материалов с использованием приборов квантово-оптической электроники.

Практико-ориентированное проектное задание должно отражать 4 основных аспекта: технологический, материаловедческий инновационный. теоретический, И теоретическим аспектом понимается написание литературного обзора по выбранной тематике, включающего краткую историческую справку, принцип работы, обзор современного рынка И рассмотрение перспективных областей применения. Технологический аспект должен отражать разбор технологии изготовления выбранного устройства, оценку ее энергоэффективности и экологичности с точки зрения организации производства, методы, инструменты, подходы и т.д. Материаловедческий аспект включает в себя рассмотрение материалов, используемых в технологии изготовления выбранного устройства и обоснование их применения. В инновационном аспекте следует рассмотреть

возможные способы модернизации существующей технологии изготовления выбранного устройства или используемых в технологии материалов и оценить влияние предлагаемых изменений на входные и выходные параметры изготавливаемого устройства. Выполнение практико-ориентированного проектного задания осуществляется частями

Контрольные точки по сдаче практико-ориентированного проектного задания: 10-ая неделя (1 и 2 часть), 12-ая (3 часть) и 14-ая (4 часть) недели семестра. Защита практикоориентированного проектного задания осуществляется перед всей группой на семинарахконференциях посредством устного доклада с презентацией.

Наиболее сложные и проблемные вопросы курса могут быть разъяснены обучающимся во время очных и дистанционных консультаций с использованием современных коммуникационных платформ (Zoom, Skype и др.) и электронной почты.

Зачет проходит в форме выполнения заданий для промежуточной аттестации.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительнобалльная система.

Баллами оценивается: выполнение каждого контрольного мероприятия в семестре (в сумме 56 баллов), активность в семестре (в сумме 16 баллов) и сдача зачета (28 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

Получение минимальных баллов по всем контрольным мероприятиям в течение семестра обязательно.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка	
Менее 50	2	
50 – 69	3	
70 - 85	4	
86 – 100	5	

РАЗРАБОТЧИКИ:

Доцент Института ПМТ

Ст. преподаватель Института ПМТ

Рабочая программа дисциплины «Лазерные технологии в микроэлектронике» по направлению подготовки 22.03.01 «Материаловедение и технологии материалов» направленности (профилю) «Технологии материалов микроэлектроники» разработана в Институте ПМТ и утверждена на заседании Ученого совета Института ПМТ 19 декабря 2024 года, протокол N 16.

Директор Института ПМТ

С.В. Дубков/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Передовой инженерной школой
Директор ПИШ/А.Л.Переверзев /
Рабочая программа согласована с Центром подготовки к аккредитации и независимо оценки качества
Начальник АНОК/И.М.Никулина /
Рабочая программа согласована с библиотекой МИЭТ
Лиректор библиотеки фил /Т П. Филиппова/