Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александроминистерство науки и высшего образования Российской Федерации

Должность: И.О. Рактора Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 18.06.2025 15:40:27

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по У

И.Г. Игнатова

20 dl

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Топологическое проектирование»

Направление подготовки - 11.03.04 «Электроника и наноэлектроника» Направленность (профиль) – «Автоматизация проектирования изделий наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-4 «Способен применять углубленные знания в области маршрута проектирования приборов, схем, устройств и установок электроники и наноэлектроники» **сформулирована на основе профессионального стандарта 40.040** «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков» **Обобщенная трудовая функция:** В — «Разработка топологии, физического представления стандартных ячеек библиотеки»

Трудовая функция: В/01.6 — «Размещение и соединение элементов электрических схем стандартных ячеек библиотеки»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций/подкомпетенций	
ПК-4.ТП	Применение углубленных	Знания основных маршрутов	
Способен применять	знаний в области	топологического проектирования	
углубленные знания в	маршрута	микро- и наноэлектронных	
области маршрута	топологического	приборов, схем, систем.	
топологического	проектирования приборов,	Умения использовать средства	
проектирования	схем, устройств	САПР для автоматизации	
приборов, схем,	электроники и	маршрута топологического	
устройств	наноэлектроники.	проектирования.	
электроники и		Опыт использования САПР для	
наноэлектроники.		топологического проектирования	
		электронных схем и систем.	

Компетенция ПК-5 «Способен разрабатывать функциональные блоки, схемы с использованием современных лингвистических средств и применять их при проектировании цифровых и аналоговых систем на системном, функциональном, логическом и физическом уровнях» **сформулирована на основе профессионального стандарта 40.040** «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков».

Обобщенная трудовая функция: В - «Разработка топологии, физического представления стандартных ячеек библиотеки»

Трудовая функция: В/01.6 — «Размещение и соединение элементов электрических схем стандартных ячеек библиотеки»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций/подкомпетенций
ПК-5.ТП	Использование	<i>Знания</i> принципов
Способен	вычислительных средств	конструирования электронных
разрабатывать	для решения задач	схем и систем с использованием
функциональные	топологического	средств САПР на физическом
блоки, схемы с	проектирования цифровых	уровне.
использованием	интегральных схем.	<i>Умения</i> разрабатывать
современных средств		функциональные блоки, схемы
топологического		для цифровых и аналоговых
проектирования и		систем на физическом уровне.
применять их при		Опыт использования средств
проектировании		САПР на физическом уровне.
цифровых и		
аналоговых систем на		
физическом уровне.		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений образовательной программы (дисциплина по выбору).

Изучение дисциплины базируется на следующих ранее изучаемых дисциплинах: «Дискретная математика», «Общая физика. Оптика», «Технология интегральных микросхем».

Материалы, изучаемые в данной дисциплине, используются при прохождении производственной практики и подготовке бакалаврской выпускных работ.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		CTB		Контактная работа					
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкост (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация	
4	7	4	144	32	16	16	44	Экз(36), КП	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная р	абота	ная		
№ и наименование модуля	Лекции	Практические занятия	Лабораторные занятия	Самостоятельн работа	Формы текущего контроля	
				15	Защита лабораторных работ	
	32	1.6		10	Написание контрольных работ	
1. Общие принципы про-			1.0	10	Прохождение тестирования	
ектирования топологии		16	16	5	Сдача практико- ориентированного задания	
				4	Защита курсового проекта	

4.1. Лекционные занятия

№ модуля	дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание					
1		1	2	Трассировка цепей. Постановка задачи. Критерии и ограничения.					
				Глобальная и детальная трассировка.					
		2	2	Волновой алгоритм трассировки. Модель объекта, дискретное рабочее поле					
				(ДРП). Принципы. Описание алгоритма. Пример. Достоинства и					
				недостатки.					
		3	2	Трассировка. Модификации волновых методов. Достоинства и недостатки					
				волнового алгоритма. Модификации. Кодирование волнового фронта.					
				Использование путевых координат.					
		4	2	Метод встречных волн. Ограничение области распространения волны.					
				Введение приоритетов направлений, алгоритм Рабина. Лучевой алгоритм.					
		5	2	Основная проблема волновых методов. Пути решения, алгоритм Винтера.					
		6	2	Трассировка алгоритмом Соукупа. Алгоритм Соукупа. Основные					
				принципы. Понятия: приоритет цепи, критический дискрет, "шахматная					
				доска". Описание алгоритма Соукупа. Пример. Достоинства, недостатки.					
		7	2	Канальная трассировка. Задачи, приводящие к понятию канала, глобальная					
				трассировка. 2-х и 4-х сторонние каналы.					
	8 2 Основные принципы канальной трассировки. Горизонтал								
		вертикальные ограничения, графы ограничений, раскрытие циклов.							
		9	2	Алгоритм левого края. Основные принципы. Описание алгоритма. Пример.					
				Достоинства.					
		10	2	Недостатки алгоритма левого края, пути их устранения. Алгоритм YACR-					

		2. Основные принципы. Фазы алгоритма. Пример.			
11 2 Определение 4-х стороннего канала – свичбокса. Постановка за,					
		трассировки.			
12	2	Пути синтеза топологии и методы решения задачи свичбокса.			
12	_	Эвристический алгоритм трассировки BEAVER.			
13	2 Операторный метод. Основные определения. Топологическая сущность				
		элементарных операторов.			
14	2	Постановка задачи трассировка в базисе операторов. Оптимальный эскиз.			
	Метод построения минимального оператора, пример. Отображение эскиза				
		на сетку свичбокса, пример.			
15	2	Применение операторного метода. Глобальная оптимизация. Трассировка			
цепей в неограниченной области.					
16	2	Трассировка двухтерминальных цепей в двусвязной области.			
16	2	Многоуровневая модель трассировки. Основные принципы.			

4.2. Практические занятия

№ модуля	дисциплины	№ практического	занятия	Объем занятий	(часы)	Наименование занятия				
	1	1		2	2	Постановка задачи трассировки цепей. Критерии и ограничения.				
						Глобальная и детальная трассировка.				
		2		2	2	Волновые алгоритмы трассировки. Достоинства, недостатки. Примеры.				
		3		2	,	Силовой алгоритм размещения элементов СБИС на кристалле. Поиск				
				2	_	рункции оптимизации.				
		4		2	,	Лучевые алгоритмы трассировки цепей. Достоинства, недостатки.				
				4	_	Сравнение с волновыми алгоритмами. Примеры.				
		5				Волновой алгоритм трассировки Соукупа. Основные понятия.				
				2	2	Достоинства, недостатки. Модификации алгоритма.				
		6		_	,	Канальная трассировка. Горизонтальные и вертикальные ограничения,				
	6 2 графы ограничений, раскрытие циклов.		графы ограничений, раскрытие циклов.							
		7 2 Алгоритм левого края. Основные принципы. Описание алгоритм				Алгоритм левого края. Основные принципы. Описание алгоритма.				
		Достоинства, недостатки. Модификации алгоритма.								
		8		2	2	Понятие свичбокса. Методы решения задачи свичбокса. Оптимальный				
						эскиз. Метод построения минимального оператора.				

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1	4	Общие принципы работы с современными САПР топологического
			синтеза
	2	4	Подготовка исходных данных для проектирования, формирование базы
			данных, планировка.
	3	4	Трассировка цепей земли и питания. Размещение элементов.
	4	4	Пробная трассировка. Оценка качества планировки кристалла

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС			
1	10	Подготовка к лабораторным работам: поиск информации о			
		схемотехнической реализации базовых библиотечных элементов.			
	10	Подготовка к тестированию.			
	20	Подготовка курсового проекта: поиск информации о методах и			
		алгоритмах проектирования топологии СБИС.			
	10	Подготовка к контрольным заданиям			
	4	Выполнение практико-ориентированного задания			

4.5. Примерная тематика курсовых работ (проектов)

- 1. Размещение стандартных ячеек на кристалле методом моделирования металлического отжига.
 - 2. Эффективные методы решения задачи легализации размещения.
 - 3. Синтез дерева цепей синхронизации с нулевыми значениями задержек.
 - 4. Решение задачи размещения буферов в цепях синхронизации.
 - 5. Лабиринтная трассировка межсоединений методом А* ("А звезда").
- 6. Анализ результатов трассировки цепей для экстракции паразитных емкостей и сопротивлений.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Топологическое проектирование»: https://orioks.miet.ru/prepare/ir-science?id_science=2079802

Модуль 1 «Общие принципы проектирования топологии»

Материалы для подготовки к тестированию и для выполнения индивидуальных домашних заданий

Материалы для изучения теории в рамках подготовки к лабораторным занятиям Материалы для курсового проекта.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Коршунов А.В. Маршрут проектирования ЦИС. Физический синтез: Учеб. пособие / А.В. Коршунов, С.В. Гусев; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2015. 72 с. ISBN 978-5-7256-0831-1
- 2. Беспалов В.А. Диаграммы двоичных решений в автоматизации проектирования СБИС: Учеб. пособие / В.А. Беспалов, А.Л. Глебов, А.Н. Кононов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2013. 80 с. ISBN 978-5-7256-0743-7
- 3. Гаврилов, С. Методы анализа логических корреляций для САПР цифровых КМОП СБИС / С. Гаврилов. Москва: Техносфера, 2011. 136 с. ISBN 978-5-94836-280-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/73023 (дата обращения: 12.03.2021). Режим доступа: для авториз. пользователей
- 4. Стемпковский А.Л. Методы логического и логико-временного анализа цифровых КМОП СБИС / С.В. Гаврилов, А.Л. Глебов; Ин-т проблем проектирования в микроэлектронике РАН; Под общ. ред. А.Л. Стемпковского. М.: Наука, 2007. 224 с. ISBN 978-5-02-036119-5
- 5. Казеннов Г. Г. Основы проектирования интегральных схем и систем : Учеб. пособие / Г.Г. Казеннов. М. : БИНОМ. Лаборатория знаний, 2005. 296 с. ISBN 5-94774-232- 2
- 6. Гагарина Л.Г. Алгоритмы и структуры данных : Учеб. пособие / Л.Г. Гагарина, В.Д. Колдаев; Рец. Ю.Н. Беляков. М. : Финансы и статистика : Инфра-М, 2009. 304 с. ISBN 978-5-279-03351-5
- 7. VLSI Physical Design: From Graph Partitioning to Timing Closure / Kahng Andrew B., Lienig Jens, Markov Igor L., Hu Jin. : Springer, 2011. URL: https://link.springer.com/book/10.1007/978-90-481-9591-6 (дата обращения: 12.12.2020). ISBN 978-94-007-9020-9 (Print); 978-90-481-9591-6 (Online). Текст : электронный

Нормативная литература

Не требуется

Периодические издания

- 1. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 . ISSN 1561 5405
- 2. IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTERGRATED CIRCUITS & SYSTEMS. USA: IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43. Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2019). Режим доступа: для зарегистрир. пользователей
- 2. Электронно-библиотечная система Лань : сайт. Санкт-Петербург, 2011 . URL: https://e.lanbook.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ.
- 3. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 4. ФИПС : Информационно-поисковая система: сайт. Москва, 2009 . URL: https://www1.fips.ru/elektronnye-servisy/informatsionno-poiskovaya-sistema/index.php (дата обращения: 30.09.2019)
- 5. ProQuest : сайт. URL: http://search.proquest.com/ (дата обращения: 30.10.2020). Режим доступа: для авториз. пользователей МИЭТ
- 6. Nano / Springer Nature: сайт. URL: http://nano.nature.com (дата обращения: 30.10.2020). Режим доступа: для авториз. пользователей МИЭТ
- 7. IEEE/IET Electronic Library (IEL) = IEEE Xplore : электронная библиотека. USA ; UK, 1998 . URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения: 28.10.2020). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, которое предполагает использование внешних электронных ресурсов сети Интернет для самостоятельной работы по освоению дополнительного материала дисциплины.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в формах материалов в системе OPИOKC: URL: https://orioks.miet.ru/prepare/ir-science?id_science=2079802

При проведении занятий и для самостоятельной работы используются **внешние** электронные ресурсы в формах: внешний онлайн-курс:

https://studfiles.net/preview/1082353/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное	Microsoft (Azure),
	оборудование	Microsoft Office
Учебная аудитория	Учебная доска	Не требуется
Вычислительный класс	ПЭВМ Intel LGA1156 Core	Microsoft (Azure)
4131.	i5-661 с мониторами Ilyama	Microwind
	и ViewSonic.	
Помещение для	Компьютерная техника с	Microsoft (Azure),
самостоятельной работы	возможностью подключения	браузер Google Chrome
обучающихся	к сети «Интернет» и	
	обеспечением доступа в	
	ОРИОКС	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по компетенции/подкомпетенции **ПК-5.ТП** «Способен разрабатывать функциональные блоки, схемы с использованием современных средств топологического проектирования и применять их при проектировании цифровых и аналоговых систем на физическом уровне».
- 2. ФОС по компетенции/подкомпетенции **ПК-4.ТП** «Способен применять углубленные знания в области маршрута топологического проектирования приборов, схем, устройств электроники и наноэлектроники».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Студенты, изучающие дисциплину, обязаны посетить лекционные занятия, семинары и лабораторные работы, принять участие в опросах во время практических занятий и защитить лабораторные работы и курсовой проект.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к практическим занятиям, использование основной и дополнительной литературы, интернет-ресурсов.

С целью качественной организации самостоятельной работы студентов проводятся разъяснения материала. Вводное разъяснение проводится лектором дисциплины в начале первой лекции и включает: информацию о структуре и графике контрольных мероприятий, содержании и порядке проведения контрольных мероприятий, правилах оценивания согласно НБС МИЭТ, учебной литературе и дополнительных информационных источниках, основных требованиях по оценке качества освоения дисциплины, самостоятельной работе студентов, организации и назначении консультаций.

Для студентов проводятся консультации согласно расписанию. Студентам рекомендуется активно пользоваться консультациями преподавателя: это единственная возможность обучаться индивидуально и выяснить все возникшие вопросы. Кроме этого на консультациях можно защитить лабораторную работу, если не успели на занятии.

В рамках прохождения дисциплины предусмотрено публичное представление результатов заданий на опыт деятельности.

По завершению изучения дисциплины предусмотрена промежуточная аттестация в виде экзамена.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме максимум 70 баллов), и сдача зачета (максимум 30 балла). По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступны в ОРИОКС, http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Доцент кафедры ПКИМС	Ma-	/Г.А. Иванова
1 1 1		

Рабочая программа дисциплины «Топологическое проектирование» по направлению подготовки 11.03.04 «Электроника и наноэлектроника», направленности (профилю) «Автоматизация проектирования изделий наноэлектроники» разработана на кафедре ПКИМС и утверждена на заседании кафедры <u>27 ноября 2020</u>года, протокол № 8

Заведующий кафедрой ПКИМС	<u> Anf</u>	/С.В. Гаврилов/
---------------------------	-------------	-----------------

ЛИСТ СОГЛАСОВАНИЯ

	ентром подготовки к аккредитации и
независимой оценки качества Начальник АНОК _	/И.М. Никулина/
Рабочая программа согласована с библ	иотекой МИЭТ
Директор библиотеки	фия / Т.П. Филиппова/