Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александров Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 10.09.2025 10.28.06

Уникальный программный ключ: «На циональный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

ED" MUJURICE

M.II.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Конструирование и технология термоэлектрических преобразователей энергии»

Направление подготовки — 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) - «Материалы и технологии микро- и наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция ПК-3 «Способен к организации и проведению экспериментальных исследований с применением современных средств и методов, в т.ч. при разработке технологических маршрутов» сформулирована на основе **стандарта** Профстандарт 40.005 «Специалист в области материаловедческого обеспечения технологического цикла производства объемных нанометаллов, сплавов, композитов на их основе и изделий из них»

Обобщенная трудовая функция 40.005 В [7] Менеджмент ресурсов Трудовая функция 40.005 В/02.7 Рациональное расходование основных вспомогательных и расходных материалов, используемых при их разработке и выборе

Подкомпетенции,	Задачи	Индикатары к постимания
формируемые в	профессиональной	Индикаторы достижения подкомпетенций
дисциплине	деятельности	подкомпетенции
ПК-3.КТТПЭ	Разработка программ,	Знание:
Способен	рабочих планов и	- основных параметров
планировать и	методик, организация и	термоэлектрических материалов;
проводить	проведение	- конструкции термоэлектрических
экспериментальные	экспериментов,	преобразователей энергии.
исследования	исследований и	Умение разрабатывать методику
термоэлектрических	испытаний материалов,	исследования термоэлектрических
преобразователей	обработка и анализ их	преобразователей энергии.
энергии	результатов с целью	Опыт проведения моделирования и
	выработки	исследования термоэлектрических
	технологических	преобразователей энергии.
	рекомендаций при	
	внедрении процессов в	
	производство,	
	подготовка отдельных	
	заданий для	
	исполнителей.	

Компетенция ПК-4 «Способен делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения» **сформулирована на основе профессиональных стандартов:**

40.058«Инженер-технолог по производству изделий микроэлектроники»

Обобщенная трудовая функция 40.058 D[7]Разработка групповых технологических процессов и модернизация производства изделий микроэлектроники

Трудовая функция D/03.7 Разработка и адаптация групповых технологических процессов производства изделий микроэлектроники

40.006 «Инженер-технолог в области производства наноразмерных полупроводниковых приборов и интегральных схем»

Обобщенная трудовая функция А[7]Обеспечение функционирования наноэлектронного производства в соответствии с технологической документацией. Поддержка и улучшение

существующих технологических процессов и необходимых режимов производства выпускаемой организацией продукции

Трудовые функции А/04.7 Разработка предложений по модернизации технологического процесса

А/05.7 Разработка рекомендаций по модернизации технологического оборудования и технологической оснастки на выпускаемую организацией продукцию

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-4.КТТПЭ	– сбор, обработка,	Знание:
Способен	анализ и систематизация	- основных параметров
анализировать	научно-технической	термоэлектрических структур;
результаты	информации по теме	- методов исследования
экспериментальных	исследования, выбор	термоэлектрических материалов и
исследований	методик и средств решения	преобразователей энергии.
термоэлектрически	задачи;	Умение проводить поиск научно-
х преобразователей	подготовка научно-	технической информации по
энергии	технических отчетов,	методам исследования
	обзоров, рефератов,	термоэлектрических
	публикаций по результатам	преобразователей энергии.
	выполненных исследований,	Опыт анализа результатов
	подготовка и представление	экспериментальных исследований
	докладов на научные	термоэлектрических
	конференции и семинары;	преобразователей энергии.
	фиксация и защита объектов	
	интеллектуальной	
	собственности заданий для	
	исполнителей.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы, является элективной

Входные требования к дисциплине:

Изучению модуля предшествует формирование компетенций бакалавриата в дисциплинах «Физика», «Химия», «Физическая химия», «Общее материаловедение», «Материалы электронной техники», «Полупроводниковые преобразователи энергии».

Формируемые в процессе изучения модуля компетенции в дальнейшем углубляются выполнением индивидуальных заданий НИР и практики и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		.	д Контактная работа			0й			
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	В том числе - Практическая подготовка при выполнении курсов работы (проекта)	Промежуточная аттестация
2	3	4	144	-	-	48	96	24	3аО, КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ								
	Контактная работа			.	сая нии га)			
№ и наименование модуля	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	В том числе - Практическая подготовка при выполнении курсовой работы (проекта)	Формы текущего контроля		
1. Использование термоэлектрических эффектов для преобразования энергии. Структура термоэлектрических систем.	-	-	8	19	8	Рубежный контроль 1		
2. Термоэлектрическая добротность материалов. Основные термоэлектрические материалы (ТЭМ). Технология получения ТЭМ.	-	-	8	19	8	Рубежный контроль 2		

3. Термоэлектрический						
способ охлаждения.						
Конструкция						
термоэлемента,	-	-	12	19	4	Рубежный контроль 3
термоэлектрического						
модуля Пельтье и						
приборов на их основе.						
4. Приборы и						
оборудование,						
работающие на эффекте						Рубежный контроль 4
Зеебека. КПД			20	19	4	
термоэлектрических	_	-	20	19	4	Защита курсового
генераторов. Способы						проекта
повышения						
эффективности ТЭГ.						

4.1. Лекционные занятия

Не предусмотрены.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание				
	1	2	Современное состояние термоэлектричества. Основные пути и проблемы повышения эффективности термоэлементов.				
	2	2	Структура термоэлектрических систем. Эффект Пельтье. Зонная энергетическая диаграмма контакта металл-полупроводник.				
1	3	2	Эффект Зеебека. Причины возникновения термоЭДС. Вывод коэффициента термоЭДС из кинетического уравнения. Эффект Томсона. Эффект Джоуля – Ленца. Зависимость термоЭДС от температуры и концентрации носителей. Использование термоэлектрических эффектов для преобразования энергии.				
	4	2	Использование термоэлектрических эффектов для преобразования энергии.				
	5	2	Физические основы выбора термоэлектрических материалов. Концентрационная зависимость термоэлектрических параметров.				
2	6 2		Термоэлектрическая добротность материалов. Основные термоэлектрические материалы (ТЭМ).				
	7	2	Технологии синтеза ТЭМ с рабочими температурами от 200 до 1200 К. Прямой синтез. Индукционная плавка. Механохимический синтез.				
	8	2	Технологии направленной кристаллизации ТЭМ. Зонная плавка. Экструзия. Холодное и горячее прессование. Бездиффузионная				

			кристаллизация. Искровое плазменное спекание.	
			Термоэлектрический способ охлаждения. Применение, преимущества,	
	9	2	недостатки и перспективы.	
			Конструкция термоэлемента и термоэлектрического модуля Пельтье.	
	10	2	Тепловой баланс термоэлемента. Режимы работы термоэлемента.	
	10	2	Холодопроизводительность.	
			Конструкция, свойства и технология коммутационных матриц	
			термоэлектрических модулей. Металл – диэлектрические	
	11	2	коммутационные матрицы. Технология сборки термоэлектрических	
			модулей Пельтье.	
			Технология герметизации термоэлектрических модулей. Тепло- и	
	12	2	электрофизические параметры термоэлектрических модулей.	
3			Методики для исследования термоэлектрических модулей.	
			Конструкция и технические характеристики термоэлектрического	
			оборудования для прецизионного регулирования температуры.	
	13	2	Конструкция и технические характеристики термоэлектрических	
	13	2	устройств для обеспечения тепловых режимов вычислительной	
			техники. Конструкция термоэлектрических модулей и устройств	
			специального назначения. Термоэлектрические тепловые насосы.	
			Параметры и конструкция источников постоянного тока для	
			термоэлектрических устройств. Микропроцессорные системы	
	14	2	регулирования и стабилизации температуры. Разработка и	
			использование высокоточных средств измерения температуры для	
			термоэлектрического оборудования.	
			Приборы и оборудование, работающие на эффекте Зеебека.	
	1.5	2	Термоэлектрические генераторы (ТЭГ), основные элементы	
	15	2	конструкции, классификация ТЭГ. КПД термоэлектрических генераторов. Способы повышения эффективности ТЭГ. Конструкция	
			генераторного термоэлемента.	
			Многосекционные термоэлементы (МСТ). Особенности конструкции	
			МСТ. Моделирование конструкции МСТ. Контактные системы МСТ.	
	Ф			Функции контактных систем (КС). Требования к КС. Влияние
		контактов металл-полупроводник на эффективность термоэлементов.		
			Подготовка поверхности ТЭМ для формирования КС. Структура и	
4	16	2	материалы КС. Формирование контактов вакуумным напылением.	
			Получение КС химическим осаждением металлов и сплавов на их	
			основе. Получение КС электрохимическим осаждением металлов и	
			сплавов на их основе. Получение КС с высокими значениями	
			адгезионной прочности.	
			Омические контакты, получение контактов с удельным контактным	
			сопротивлением на уровне $10^{-9} \text{ Ом} \cdot \text{м}^2$. Диффузионно-барьерные слои.	
	17	7 2	Способы компенсации термических напряжений в структуре МСТ.	
			Защитные покрытия для высокотемпературных термоэлементов.	
		_	Коммутация секций и ветвей термоэлементов.	
	18	2	Конструкция и проблемы создания генераторных термоэлектрических	

		батарей. Перспективы применения ТЭГ. Безальтернативное
		применение ТЭГ. Радиоизотопные ТЭГ, конструкция, применение.
		Радиоизотопные термокаталитические ТЭГ.
		Методы и результаты исследования элементного и фазового состава
		ТЭМ. Методики исследования тепло- и электрофизических
19	2	параметров ТЭМ. Методы исследования теплоемкости. Методы
		исследования термического коэффициента линейного расширения.
		Метод исследования плотности. Исследование микротвердости ТЭМ.
		Методы исследования термической стабильности ТЭМ и структур на
		их основе. Дифференциально-термический анализ. Метод
20	2	термогравиметрии. Исследование концентрации и подвижности
20	2	носителей заряда. Адгезия. Механизмы адгезии. Методы
		исследования адгезионной прочности. Методы исследования
		удельного сопротивления контактов и удельного сопротивления КС.
21-	0	Публичная защита КП.
24	8	

4.3. Лабораторные работы

Не предусмотрены.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС				
	3	Подготовка к рубежному контролю 1				
1	8	Подготовка к практическим занятиям				
	8	Выполнение курсового проекта				
	3	Подготовка к рубежному контролю 2				
2	Подготовка к практическим занятиям					
	8	Выполнение курсового проекта				
	3	Подготовка к рубежному контролю 3				
3	12	Подготовка к практическим занятиям				
	4	Выполнение курсового проекта				
	4 Выполнение курсового проекта и подготовка к защите					
4	12	Подготовка к практическим занятиям				
	3	Подготовка к рубежному контролю 4				

4.5. Примерная тематика курсовых работ (проектов)

- 1. Современное состояние термоэлектричества. Основные пути и проблемы повышения эффективности термоэлементов.
- 2. Альтернативные источники энергии. Основные способы получения электрической энергии.

- 3. Перспективы развития термоэлектрического материаловедения, направления повышения эффективности термоэлектрических материалов.
- 4. Прецизионные термоэлектрические системы регулирования и стабилизации температуры.
 - 5. Использование термоэлектрических эффектов для преобразования энергии.
 - 6. Технология получения термоэлектрических материалов.
 - 7. Перспективные направления применения термоэлектрических устройств.
- 8. Проблемы конструирования термоэлектрических систем с высокой холодопроизводительностью.
- 9. Конструкция, свойства и технология коммутационных матриц термоэлектрических модулей.
 - 10. Методики для исследования термоэлектрических модулей.
 - 11. Тепловые насосы. Термоэлектрические тепловые насосы.
 - 12. Эффективность различных видов преобразования энергии.
- 13. КПД термоэлектрических генераторов. Способы повышения эффективности ТЭГ.
 - 14. Многосекционные термоэлементы (МСТ). Особенности конструкции МСТ.
- 15. Контактные системы МСТ. Функции контактных систем (КС). Требования к КС.
 - 16. Структура и материалы контактных систем.
 - 17. Формирование контактов вакуумным напылением.
 - 18. Получение КС химическим осаждением металлов и сплавов на их основе.
- 19. Получение КС электрохимическим осаждением металлов и сплавов на их основе.
 - 20. Адгегия. Механизмы адгезии. Методы исследования адгезионной прочности.
- 21. Омические контакты, получение контактов с удельным контактным сопротивлением на уровне 10^{-9} Ом·м².
 - 22. Диффузионно-барьерные слои в структуре термоэлемента.
 - 23. КТЛР ТЭМ. Способы компенсации термических напряжений в структуре МСТ.
 - 24. Способы предотвращения сублимации ТЭМ в термоэлементах.
 - 25. Технология коммутации секций и ветвей термоэлементов.
 - 26. Конструкция и проблемы создания генераторных термоэлектрических батарей.
 - 27. Перспективы применения ТЭГ. Безальтернативное применение ТЭГ.
 - 28. Радиоизотопные ТЭГ, конструкция, применение.
 - 29. Радиоизотопные термокаталитические ТЭГ.
- 30. Современные методы и результаты исследования элементного и фазового состава ТЭМ.
- 31. Методики и промышленное оборудование для исследования тепло- и электрофизических параметров ТЭМ.
 - 32. Методы исследования теплоемкости.
 - 33. Методы исследования термического коэффициента линейного расширения
 - 34. Метод исследования плотности. Исследование микротвердости ТЭМ.
 - 35. Методы исследования термической стабильности ТЭМ и структур на их основе.
 - 36. Методы исследование концентрации и подвижности носителей заряда.
- 37. Методы исследования удельного сопротивления контактов и удельного сопротивления КС.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: http://orioks.miet.ru/):

Сценарий обучения по дисциплине

Модуль 1 Изучение теоретического материала для самостоятельной работы. Подготовка к практическим занятиям, подготовка к опросам по модулям осуществляется с помощью учебно-методических материалов семинаров по модулю №1, учебно-методических материалов для самостоятельной работы студентов.

Модуль 2 Изучение теоретического материала для самостоятельной работы. Подготовка к практическим занятиям, подготовка курсового проекта, подготовка к опросам по модулям осуществляется с помощью учебно-методических материалов семинаров по модулю №2, учебно-методических материалов для самостоятельной работы студентов

Модуль 3 Изучение теоретического материала для самостоятельной работы. Подготовка к практическим занятиям, подготовка курсового проекта, подготовка к опросам по модулям осуществляется с помощью учебно-методических материалов семинаров по модулю №3, учебно-методических материалов для самостоятельной работы студентов.

Модуль 4 Изучение теоретического материала для самостоятельной работы. Подготовка к практическим занятиям, подготовка курсового проекта, подготовка к опросам по модулям осуществляется с помощью учебно-методических материалов семинаров по модулю №4, учебно-методических материалов для самостоятельной работы студентов.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Физика полупроводников : учебник / К.В. Шалимова. 4-е изд., стер. Санкт-Петербург : Лань, 2022. 384 с. URL: https://e.lanbook.com/book/210524 (дата обращения: 09.02.2025).
- 2. Физика полупроводников: Учеб. пособие / А.А. Горбацевич, М.Н. Журавлев. М.: МИЭТ, 2017. 136 с.
- 3. Экспериментальные методы исследований. Измерения теплофизических величин: Учеб. пособие / А.И. Походун, А.В. Шарков. СПб. : СПбГУ ИТМО, 2006. 87 с. URL: http://books.ifmo.ru/book/210/_eksperimentalnye_metody.htm (дата обращения: 23.02.2025).
- 4. Термометрия: Учеб. пособие / Ю.И. Штерн, А.А. Шерченков, Р.Е. Миронов. М.: МИЭТ, 2013. 256 с.
- 5. Методы и средства измерений: Учебник / Г.Г. Раннев, А.П. Тарасенко. 6-е изд., стер. М.: Академия, 2010. 336 с.
- 6. Introduction to Thermoelectricity / H.J. Goldsmid 2nd Edition. Springer, 2016. 278 p. URL: https://link.springer.com/book/10.1007%2F978-3-662-49256-7 (дата обращения: 29.01.2025).
- 7. Материалы электронной техники: Лабораторный практикум: В 3-х ч. Ч. 3 / А.А. Шерченков, Ю.И. Штерн. М.: МИЭТ, 2004. 88 с.

- 8. Физика и технология полупроводниковых преобразователей энергии: Учеб. пособие. Ч. 1 / А.А. Шерченков, Ю.И. Штерн. М.: МИЭТ, 2006. 164 с.
- 9. Физика и технология полупроводниковых преобразователей энергии: Учеб. пособие. Ч. 2 / А.А. Шерченков, Б.Г. Будагян. М.: МИЭТ, 2007. 280 с.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru(дата обращения: 20.02.2025). Режим доступа: для зарегистрир. пользователей.
- 2. Электронные ресурсы Российской государственной библиотеки: сайт. Москва, 1999-2020. URL: http://www.rsl.ru (дата обращения: 20.02.2025).
- 3. **Бесплатная поисковая система «Google Scholar»:** сайт. США, 2004: URL: https://scholar.google.ru. (дата обращения: 20.02.2025). Режим доступа: свободный.
- 4. **База American Chemical Society (ACS):** Некоммерческое научное издательство. Американское химическое общество, 2021. URL: http://pubs.acs.org (дата обращения: 20.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 5. Электронная версия базы данных ECS издательства Electrochemical Society: Научное издательство IOP Publishing, 2021. URL: https://iopscience.iop.org/partner/ecs (дата обращения: 20.02.2025). Режим доступа: для авторизованных пользователей МИЭТ
- 6. **Издательство Springer**: сайт. URL: http://link.springer.com (дата обращения: 20.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 7. **Научная библиотека открытого доступа «КИБЕРЛЕНИНКА»**: сайт. URL: https://cyberleninka.ru/ (дата обращения 15.02.2025).
- 8. Электронно-библиотечная система издательства «Лань»: сайт. URL: https://e.lanbook.com/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 9. **Учебные издания НИУ ИТМО**: сайт. URL: http://books.ifmo.ru/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 10. **Научно-образовательный портал Znanium**: сайт. URL: https://znanium.ru/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 11. Электронно-библиотечная система BOOK.ru: сайт. URL: https://book.ru/ (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.
- 12. Электронно-библиотечная система РУКОНТ: сайт. URL: https://lib.rucont.ru/search (дата обращения 15.02.2025). Режим доступа: для авторизованных пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется традиционное обучение.

Применяется модель обучения, предполагающая обязательное присутствие студентов на очных учебных занятиях и самостоятельное выполнение индивидуальных практико-ориентированных заданий с проверкой, обсуждением, доработкой и подведением итогов как на очных учебных занятиях, так с использованием онлайнресурсов и сервисов.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных	Оснащенность учебных	Перечень
аудиторий и помещений для	аудиторий и помещений для	программного
самостоятельной работы	самостоятельной работы	обеспечения
Учебная аудитория	Компьютер, проекционная	OC Microsoft
«Лаборатория НИРС»	установка VIEWSONIC PRO-	Windows,
	8500.	MS Office
Помещение для	Компьютерная техника с	OC Microsoft
самостоятельной работы	возможностью подключения к	Windows,
	сети «Интернет» и обеспечением	MS Office, Браузер
	доступа в электронную	
	информационно-	
	образовательную среду МИЭТ	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции ПК-3.КТТПЭ «Способен планировать и проводить экспериментальные исследования термоэлектрических преобразователей энергии».
- 2. ФОС по подкомпетенции ПК-4.КТТПЭ «Способен анализировать результаты экспериментальных исследований термоэлектрических преобразователей энергии».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина «Конструирование И технология термоэлектрических преобразователей энергии» состоит из четырех модулей. В первом модуле рассматриваются требования к термоэлектрическим материалам, методы исследования электрофизических параметров материалов, тепловой баланс идеального термоэлемента. Во втором модуле рассматриваются приборы, работающие на эффекте Зеебека, перспективы и проблемы их применения, как альтернативных источников энергии. Третий модуль посвящен приборам и термоэлектрическим системам, предназначенным для охлаждения и регулирования, в том числе прецизионного, температуры в основном изделий электронной техники. В четвертом модуле рассматриваются конструкционные особенности приборов Пельтье и Зеебека, основные технологические операции их изготовления. Рассматриваются перспективные направления повышения эффективности

термоэлектрических приборов и технологические проблемы совершенствования этих приборов.

Студенты должны осуществлять поиск дополнительной информации по темам семинаров в научных источниках с последующим обсуждением результатов поиска с преподавателем и одногруппниками.

Выполнение курсового проекта на СРС предполагает формирование у обучающихся подкомпетенций по индикаторам умений и приобретения опыта деятельности. Оно включает в себя изучение термоэлектрических материалов и методов их исследования, конструкции термоэлектрических устройств. Контроль выполнения студентами курсового проекта проводится на семинарах. Студенты выступают с докладом на семинаре, излагая содержание проделанной работы, анализируя различные аспекты освещаемой проблемы, происходит обсуждение информации в формате научной дискуссии.

Подготовкой материалов для получения зачета необходимо начать заниматься с первых дней семестра, не устраняться от активного участия в активных видах занятий. Студентам рекомендуется активно посещать предусмотренные расписанием консультации с преподавателем. Студенты должны осуществить поиск дополнительной информации по темам семинаров в научных источниках с последующим обсуждением результатов поиска с преподавателем и одногруппниками.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система,

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре и итоговая аттестация (в сумме - 100 баллов).

Для сдачи зачёта с оценкой по дисциплине разработаны ФОСы, включающие практико-ориентированное задание по проверке сформированности подкомпетенций с методическими указаниями по их выполнению и критериями оценки.

Структура и график контрольных мероприятий приведены в журнале успеваемости на OPИOКС (http://orioks.miet.ru/).

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 – 69	3
70 – 85	4
86 – 100	5

РАЗРАБОТЧИК:

Профессор Института ПМТ, д.т.н., доц.

Рабочая программа дисциплины «Конструирование и технология термоэлектрических преобразователей энергии», по направлению подготовки 11.04.04 «Электроника и наноэлектроника», направленности (профилю) «Материалы и технологии микро- и наноэлектроники» разработана в Институте перспективных материалов и технологий и утверждена на заседании Ученого совета Института ПМТ 28 февраля 2025 года, протокол № 18.

Директор Института ПМТ

′ С.В.Дубков /

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

_/ И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

____/ Т.П.Филиппова /