Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшег фобразования Российской Федерации

Должность: Ректор МИЭТ Дата подписания: 05.02.2025 12:02:28

Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736**Московоголизицеститут** электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

_А.Г. Балашов

» *шиней* 2024 г.

MIT

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Приборно-технологическое моделирование»

Направление подготовки — 09.04.01 «Информатика и вычислительная техника» Направленность (профиль) — «Программные средства САПР сверхбольших интегральных схем и систем на кристалле»

Программа разработана в Передовой инженерной школе «Средства проектирования и производства электронной компонентной базы»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция ПК-2 «Способен проводить анализ и тестирование характеристик программных продуктов и/или аппаратных средств» сформулирована на основе профессионально стандарта 06.015 «Специалист по информационным системам».

Обобщенная трудовая функция: D – «Управление работами по сопровождению и проектами создания (модификации) ИС, автоматизирующих задачи организационного управления и бизнес-процессы»

Трудовая функция: D/16.7 – «Организационное и технологическое обеспечение проектирования и дизайна ИС»

Подкомпетенции,	Задачи	w.		
формируемые в	профессиональной	Индикаторы достижения		
дисциплине	деятельности	компетенций/подкомпетенций		
ПК-2. ПТМ	- разработка,	Знать:		
Владеет программными	модернизация,	- инструменты и методы приборно-		
средствами TCAD по	тестирование и	технологического моделирования и		
решению задач	поддержка	проектирования ИС		
приборно-	программного	- методы численного моделирования		
технологического	обеспечения	наноразмерных элементов		
моделирования	приборно-	интегральных схем.		
	технологического	Уметь:		
	моделирования;	- рассчитывать электрические		
	- настройка	характеристики наноразмерных		
	программного	КМОП-структур и биполярных		
	обеспечения	структур;		
	приборно-	- распределять работы в рамках		
	технологического	управления работами по		
	моделирования, т.е.	сопровождению и проектами создания (модификации) ИС приборно-		
	внесение изменений	технологического моделирования.		
	и настройка			
	существующего	Опыт: - обеспечения соответствия		
	приложения таким	проектирования и дизайна		
	образом, чтобы оно	интегральных схем в среде приборно-		
	функционировало в	технологического моделирования		
	рамках	принятым в проекте технологиям в		
	информационной	рамках управления работами по		
	системы заказчика;	сопровождению и проектами создания		
	- разработка	(модификации) ИС;		
	физических и	- использования средств приборно-		
	математических	технологического моделирования для		
	моделей,	расчета влияния конструкции		
	компьютерное	наноразмерных приборов на их		

моделирование	электрические характеристики при
исследуемых	проектировании элементов
физических	интегральных схем в среде приборно-
процессов,	технологического моделирования
приборов, схем и	
устройств,	
относящихся к	
профессиональной	
сфере создания	
(модификации) ИС	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы, дисциплина по выбору.

Входные требования к дисциплине — необходимы компетенции в области основ технологии создания электронной компонентной базы, использования компьютерных технологий в научных исследованиях, технического английского языка.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		Е Контактная работа						
Kypc	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкос (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	3	108	16	32	-	60	Зачет

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактн	іая работа		В		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
Модуль 1.				6	Защита ЛР	
Алгоритмы и				4	Тестирование	
методы	8	8	-		Проверка выполнения	
моделирования				10	части индивидуального	
технологических					задания	

	Контакти	іая работа		Б	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
процессов создания					
ИС в среде					
приборно-				4	Рубежный контроль
технологического					
моделирования					
Модуль 2.				6	Тестирование
Алгоритмы и				16	Защита ЛР
методы приборного	8	24	-		C
моделирования при				14	Сдача индивидуального
проектировании ИС					задания

4.1. Лекционные занятия

№ модуля	дисциплины № лекции	Объем занятий (часы)	Краткое содержание
	1.	2	Введение в предмет курса. Роль приборно-технологического моделирования в проектировании интегральных микросхем. Структура пакета TCAD Synopsys.
1.	2.	4	Алгоритмы моделирования и модели основных технологических процессов. Ионная имплантация. Диффузия примесей. Окисление. Травление и осаждение.
	3.	2	Алгоритмы и методики проведения исследований средствами TCAD
	1.	2	Основные задачи и алгоритмы численного приборного моделирования. Базовые уравнения, переменные, граничные условия.
2.	2.	2	Модели подвижности, рекомбинации и генерации, используемые при моделировании полупроводниковых приборов. Методики проведения малосигнального анализа.
2.	3.	2	Алгоритм решения одномерного уравнения Пуассона для обратносмещенного n+-p — перехода. Особенности расчета напряжения пробоя p-n-переходов, МДП - и биполярных транзисторов.
	4.	2	Особенности приборного моделирования субмикронных МДП-транзисторов и гетероструктур.

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные работы

№ модуля	дисциплины	№ лабораторной	работы	Объем занятий	(часы)	Наименование работы
1.		1.		4		Одномерное моделирование технологических процессов. Анализ и тестирование программы Sim1D
		2.		4		Моделирование технологических процессов в среде TCAD Synopsys.
		1.		4		Алгоритм формирования структуры с использованием программы SDE.
		2.		4		Формирование структуры трехмерного КНИ - МОП - транзистора с использованием программы SDE.
		3.		4		Приборное моделирование биполярного транзистора с помощью программы SDEVICE.
2.		4.		4		Расчет АЧХ биполярного транзистора с помощью программы SDEVICE.
	5. 4				Алгоритмы и методики моделирования с использованием интегральной среды SWB пакета TCAD Synopsys. Расчет характеристик МОП – транзистора.	
		6.		4		Расчет пробивного напряжения p-n-перехода с плавающими кольцами.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	6	Подготовка к лабораторным работам
1.	4	Подготовка к тестированию
1.	10	Выполнение части индивидуального задания
	4	Подготовка к рубежному контролю
	6	Подготовка к тестированию
2.	16	Подготовка к лабораторным работам
	14	Выполнение индивидуального задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: , http://orioks.miet.ru/):

- Сценарий по дисциплине
- Методические рекомендации по выполнению лабораторных работ
- Ссылки на литературу по всей дисциплине
- Варианты индивидуальных заданий
- Варианты заданий для зачета.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1 Лабораторный практикум по курсу "Моделирование элементов твердотельной электроники" / Е. А. Артамонова, А. Г. Балашов, А. Ю. Красюков, А. В. Козлов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; под редакцией Т. Ю. Крупкиной. Москва: МИЭТ, 2022. 91 с. Имеется электронная версия издания. б.ц., 100 экз. Текст: непосредственный: электронный.
- 2 Лабораторный практикум по курсу "Моделирование технологических процессов" / Е.А. Артамонова, А.Г. Балашов, А.С. Ключников [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. Т.Ю. Крупкиной. М.: МИЭТ, 2018. 108 с. Имеется электронная версия издания. б.ц., 150 экз.
- 3 Лабораторный практикум по курсу "Моделирование в среде TCAD". Ч. 2. Приборнотехнологическое моделирование элементов интегральных схем / Е.А. Артамонова, А.Г. Балашов, А.С. Ключников [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. Т.Ю. Крупкиной. М.: МИЭТ, 2012. 140 с. Имеется электронная версия издания. б.ц., 100 экз.
- 4 Методические указания по выполнению курсового проекта по курсу "Маршруты БИС" / А.Г. Балашов, А.В. Козлов, А.Ю. Красюков, С.А. Поломошнов; М-во образования и науки РФ, МГИЭТ(ТУ); Под ред. Т.Ю. Крупкиной. М.: МИЭТ, 2010. 48 с. Имеется электронная версия издания. б.ц., 200 экз.
- 5 Лабораторный практикум по курсу "Моделирование в среде TCAD". Ч. 1. Введение в приборно-технологическое моделирование / Е.А. Артамонова, А.Г. Балашов, А.С. Ключников [и др.]; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ); Под ред. Т.Ю. Крупкиной. М.: МИЭТ, 2009. 172 с. Имеется электронная версия издания. б.ц., 200 экз.
- 6 Королев М.А. (Автор МИЭТ, ИЭМС). Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 1. Технологические процессы изготовления кремниевых интегральных схем и их моделирование / М.А. Королев, Т.Ю. Крупкина, М.А. Ревелева; Под ред. Ю.А. Чаплыгина. 4-е изд., электронное. М.: Бином. Лаборатория знаний, 2020. 400 с. URL: https://e.lanbook.com/book/151589 (дата обращения: 11.10.2024). ISBN 978-5-00101-814-8.

Королев М.А. (Автор МИЭТ, ИЭМС). Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 2. Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования / М.А. Королев, др.] [и; Под ред. Ю.А. Чаплыгина. - М.: Бином. Лаборатория знаний, 2009. - 422 с. - Изд. выполнено в рамках инновац. образоват. программы МИЭТ "Соврем. проф. образование для рос. инновац. системы в области электроники". - ISBN 978-5-94774-583-2; 978-5-94774-585-6: 164-45; 265-00, 1000 экз.

Нормативная литература

Не требуется

Периодические издания

- 1. RUSSIAN MICROELECTRONICS. : Springer, [2000] . URL: http://link.springer.com/journal/11180 (дата обращения: 11.10.2024). Режим доступа: для авториз. пользователей МИЭТ
- 2. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. ЭЛЕКТРОНИКА : научнотехнический журнал / ФГАОУ ВО "Национальный исследовательский университет "МИЭТ". Москва : МИЭТ, 1996 . URL: http://ivuz-e.ru/ (дата обращения: 25.07.2024). Режим доступа: свободный, до текущего года. Переводная версия RUSSIAN MICROELECTRONICS (составной журнал), SEMICONDUCTORS (составной журнал). ISSN 1561-5405 (Print); 2587-9960 (Online). Текст : электронный : непосредственный.
- 3. IEEE TRANSACTIONS ON ELECTRON DEVICES. USA: IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=16 (дата обращения: 11.10.2024). Режим доступа: для авториз. пользователей МИЭТ

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1 IEEE/IET Electronic Library (IEL) [Электронный ресурс] = IEEE Xplore : Электронная библиотека. USA ; UK, 1998-. URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения : 10.01.2024). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта «Национальная подписка»
- 2 Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 10.01.2024). Режим доступа: для авторизированных пользователей МИЭТ
- 3 Юрайт : Электронно-библиотечная система : образовательная платформа. Москва, 2013 . URL: https://urait.ru/ (дата обращения : 10.01.2024); Режим доступа: для авторизированных пользователей МИЭТ.
- 4 eLIBRARY.RU : Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 10.01.2024). Режим доступа: для зарегистрированных пользователей

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации дисциплины используется смешанное обучение, в основе которого лежит интеграция технологий традиционного и электронного освоения компетенций, в частности за счет использования онлайн тестирования, взаимодействие со студентами в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, сервисы видеоконференцсвязи, социальные сети.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние** электронные ресурсы в формах тестирования в ОРИОКС и MOODLe.

При проведении занятий и для самостоятельной работы используются внешние электронные ресурсы в формах:

внешних онлайн-курсов:

1. Онлайн-курс компании Synopsys «Sentaurus Training» (дата обращения: 11.10.2024)

электронных компонентов сервиса youtube (дата обращения: 11.10.2024):

- 1. <u>TCAD Sentaurus Hands-on Tutorial: Linux Environment (youtube.com)</u> https://www.youtube.com/watch?v=8I8NErvZdo0&list=PLnK6MrIqGXsKoQhUE-EjgJhum8YlJH4un
 - 2. TCAD sde (англ)

 $\underline{https://www.youtube.com/watch?v=e2Lt3y13oMw\&list=PLnK6MrIqGXsKoQhUE-EigJhum8YlJH4un\&index=3}$

3. TCAD SWB (англ)

 $\underline{https://www.youtube.com/watch?v=IE8HSQfvjLA\&list=PLnK6MrIqGXsKoQhUE-EjgJhum8YlJH4un\&index=8}$

4. TCAD svisual (англ)

https://www.youtube.com/watch?v=PHPsyVqsnps&list=PLnK6MrIqGXsKoQhUE-EjgJhum8YlJH4un&index=12

5. TCAD sdevice (англ)

https://www.youtube.com/watch?v=OjYjAaUU3EA&list=PLnK6MrIqGXsKoQhUE-EjgJhum8YlJH4un&index=4

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Компьютер с	Win pro от 7,
	мультимедийным	Microsoft Office Professional
	оборудованием	Plus или Open Office,
		браузер (Firefox, Google
		Crome); Acrobat reader DC
Компьютерный класс для	Компьютерная техника с	Win pro от 7; QtCreator
лабораторных работ	возможностью подключения к	IDE; Microsoft Visual
	сети «Интернет» и	Studio; браузер (Firefox,
	обеспечением доступа в	Google Chrome);
	электронную информационно-	Acrobat reader DC
	образовательную среду	Операционная система
	МИЭТ. Рабочие станции.	Linux, программное
		обеспечение Synopsys
Помещение для	Компьютерная техника с	Операционная
самостоятельной работы	возможностью подключения к	система Microsoft Windows
	сети «Интернет» и	Microsoft Office
	обеспечением доступа в	браузер
	электронную информационно-	Acrobat reader DC
	образовательную среду МИЭТ	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по компетенции/подкомпетенции ПК-2. ПТМ: «Владеет программными средствами TCAD по решению задач приборно-технологического моделирования»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: **HTTP://ORIOKS.MIET.RU**/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Для формирования подкомпетенций и приобретения необходимых знаний, умений и опыта деятельности в рамках изучения данной дисциплины проводятся лекции и лабораторные работы. Дополнительной формой аудиторной работы являются консультации. Студентам рекомендуется активно пользоваться консультациями

преподавателя: это единственная возможность обучаться индивидуально и выяснить все возникшие вопросы. Кроме этого на консультациях можно защитить лабораторную работу, если не успели на занятии

Материал курса представлен двумя модулями.

В первом модуле рассматриваются алгоритмы и методы моделирования технологических процессов создания ИС в среде приборно-технологического моделирования, в том числе структура пакета приборно-технологического моделирования ТСАD Synopsys, алгоритмы моделирования и модели основных технологических процессов, методики проведения исследований в программной среде TCAD.

Bo втором модуле рассматриваются алгоритмы И методы приборного моделирования при проектировании ИС, в том числе задачи и алгоритмы численного приборного моделирования, базовые уравнения, переменные, граничные условия, используемые физические модели, методики проведения малосигнального анализа, расчета напряжения пробоя, приборного моделирования субмикронных транзисторов и гетероструктур.

Лекции проводятся в каждом модуле. В них оценивается степень усвоения пройденного материала, уровень аргументации своего мнения и владения устной речью. Предварительно преподаватель формулирует вопрос, ответ на который является предметом дискуссии. Для проверки полученных знаний проводится тестирование.

Лабораторные работы содержатся в каждом модуле. Выполнению заданий предшествует проверка знаний студентов - их теоретической готовности к выполнению задания. По окончанию выполнения каждого задания проводится обсуждение и защита результатов выполнения с каждым студентом. В заданиях присутствуют разделы, в которых нет четких инструкций их выполнения, что требует от студентов самостоятельного решения (выбора способов выполнения работы в литературных источниках).

Посещение лекций и лабораторных работ является обязательным.

Для закрепления полученных знаний и в качестве практической составляющей подготовки студентов, ими выполняются самостоятельные индивидуальные работы по тематике лабораторных работ (проектные задания). Самостоятельные работы могут проходить как аудиторно (в аудиториях для самостоятельной подготовки), так и дома. Самостоятельные работы нацелены на формирование необходимого опыта практической деятельности и включают в себя построение маршрута в программной среде TCAD для выполнения расчета электрических характеристик наноразмерных КМОП и биполярных структур и проведение моделирования, но без помощи преподавателя и выполняются каждым студентом индивидуально. Защита результатов выполнения самостоятельных индивидуальных работ (проектных заданий) проводится путем публичного представления результатов на зачетном занятии в форме доклада (5-7 мин.) и ответов на вопросы. Доклад сопровождается презентацией. Комиссия для оценивания представленных результатов при проведении зачета формируется с участием специалистов профильных предприятий по данному направлению.

Критерием оценки самостоятельных работ является совокупность данных, реализованных и продемонстрированных в каждом конкретном случае.

Полученные знания на лекциях, а также на лабораторных работах, используются студентами при выполнении индивидуального задания, а так же написании выпускных

квалификационных работ. Опыт, полученный студентами при выполнении лабораторных работ, несомненно, пригодится при работе по специальности.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 70 баллов) и сдача зачета (30 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИКИ:

Профессор Института ИнЭл, д.т.н.

У /Т.Ю. Крупкина/
/А.Ю. Красюков/

Доцент Института ИнЭл, к.т.н.

Рабочая программа дисциплины «Приборно-технологическое моделирование» направлению подготовки 09.04.01 «Информатика и вычислительная направленность (профиль) «Программные средства САПР сверхбольших интегральных схем и систем на кристалле» разработана в Институте ИнЭл и утверждена на заседании Ученого совета Института ИнЭл 06 09 2024 года, протокол № 🕹 /В.В. Лосев/ Директор Института ИнЭл ЛИСТ СОГЛАСОВАНИЯ Рабочая программа согласована с Передовой инженерной школой Директор ПИШ /А.Л. Переверзев / Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества Начальник АНОК /И.М. Никулина / Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

12

18 /kap= gree 4.0)

/Т.П. Филиппова/