Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшего образования Российской Федерации

Должность: РекторФедеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 16.07.2024 12:44:09

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d/6c8f8bea88Zb8d6ff)

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физика. Механика. Термодинамика» Направление 02.03.01 «Математика и компьютерные науки» Направленность (профиль) «Компьютерная математика и анализ данных»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция	Подкомпетенция, формируемая в дисциплине	Индикаторы достижения компетен- ций	
ОПК-1. Способен кон-	ОПК-1. ФизМТ Спосо-	Знает фундаментальные законы при-	
сультировать и исполь-	бен применять фунда-	роды и основные физические законы	
зовать фундаменталь-	ментальные знания,	механики	
ные знания в области	полученные в области	Умеет применять физические законы	
математического ана-	механики, и использо-	механики для решения задач теорети-	
лиза, комплексного и	вать их при решении	ческого и прикладного характера	
функционального ана-	задач в области естест-	Имеет опыт использования знаний	
лиза алгебры, аналити-	венных наук	механики при решении практических	
ческой геометрии,		задач	
дифференциальной			
геометрии и топологии,			
дифференциальных			
уравнений, дискретной			
математики и матема-			
тической логики, тео-			
рии вероятностей, ма-		·	
тематической стати-			
стики и случайных			
процессов, численных	9		
методов, теоретиче-			
ской механики в про-			
фессиональной дея-			
тельности.			

Компетенция ПК-1. «Способен применять знание физико-математических дисциплин для исследования и построения моделей в естественно-научных и инженерных приложениях»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения под- компетенций
ПК-1. ФизМТ Спосо-	- математическое модели-	Знает фундаментальные законы
бен применять фун-	рование процессов и объек-	природы и основные физические
даментальные знания,	тов, применение математи-	законы механики и термодина-
полученные в области	ческих моделей и методов	мики
механики и термоди-	обработки и анализа дан-	Умеет применять физические
намики и использо-	ных, аналитических и на-	законы механики и термодина-

вать их при решении	учных пакетов прикладных	мики для решения задач теорети-		
задач в области есте-	программ при решении ис-	ческого и прикладного характера		
ственных наук	следовательских и проект-	Имеет опыт использования зна-		
	ных задач	ний физики в области механики и		
		термодинамики при решении		
,		практических задач		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине: для освоения дисциплины необходимы знания по физике и математике в объеме требований ЕГЭ.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		7	-M	Контактная работа			5	
Курс	Семестр	Общая трудоём кость (ЗЕ)	Общая трудоём кость (часы)	Лекции (часы)	Практические занятия (часы)	Лабораторные работы (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	1	5	180	32	16	16	80	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конт	актная р	работа	В		
№ и наименование модуля	Лекции (часы)	Практические занятия (часы)	Лабораторные занятия (часы)	Самостоятельная работа (часы)	Формы текущего контроля	
1. Кинематика. Динамика материальной точки. Законы сохранения	10	6	8	31	Опрос Выполнение и защита ла- бораторных работ Контрольная работа № 1	
2. Динамика твердого тела. Релятивистская механика. Механические колебания, механические волны	16	6	8	22	Опрос Выполнение и защита лабораторных работ Выполнение и защита учебного задания Рубежный контроль (тестирование)	
3. Молекулярная физика	6	4	-	27	Опрос	

	Выполнение и защита ла-		
	бораторных работ		
	Контрольная работа № 2		
	Выполнение и защита		
	практико-		
	ориентированного задания		

4.1. Лекционные занятия

	Дисции № лекции	Объем занятий (часы)	Краткое содержание			
1	1 -	2	Кинематика движения материальной точки.			
			Физические модели: материальная точка, система материальных то-			
			чек, абсолютно твердое тело. Пространство и время. Способы описа-			
			ния движения материальной точки. Перемещение, скорость и ускоре-			
			ние. Нормальное и касательное ускорения.			
	2	2	Кинематика движения твердого тела.			
			Степени свободы и обобщенные координаты. Число степеней свободы			
			абсолютно твердого тела. Векторы элементарного углового переме-			
			щения, угловой скорости и углового ускорения. Связь между угловы-			
	2.5		ми и линейными величинами.			
	3-5	6	Динамика материальной точки. Законы сохранения.			
			Инерциальные системы отсчёта. Первый закон Ньютона. Принцип от-			
			носительности Галилея. Преобразования Галилея. Масса и импульс.			
			Второй и третий законы Ньютона. Уравнение движения материальной			
			точки во вращающейся неинерциальной системе отсчета. Импульс системы материальных точек. Закон сохранения импульса.			
			Центр масс. Теорема о движении центра масс. Система центра масс.			
			Работа, мощность, энергия. Кинетическая энергия системы матери-			
			альных точек. Теорема об изменении кинетической энергии. Консер-			
			вативные и неконсервативные силы. Потенциальная энергия. Законы			
			сохранения и изменения механической энергии. Момент импульса и			
			момент силы. Уравнение моментов. Закон сохранения момента им-			
			пульса.			
2	6-7	4	Динамика твердого тела.			
			Твердое тело как система материальных точек. Уравнения движения и			
			равновесия твердого тела. Вращение твердого тела вокруг неподвиж-			
			ной оси. Момент инерции. Теорема Штейнера. Кинетическая энергия			
			вращающегося твердого тела. Работа внешних сил при вращении			

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
			твердого тела. Плоское движение твердого тела.
	8	2	Основы релятивистской механики.
	X		Постулаты специальной теории относительности. Преобразования Лоренца. Следствия преобразований Лоренца. Парадокс близнецов. Релятивистские формулы сложения скоростей. Релятивистская динамика. Релятивистские импульс и энергия. Уравнение движения релятивистской частицы. Движение частицы в постоянном силовом поле.
	9-	6	Механические колебания.
	11		Понятие о колебательных процессах. Гармонические колебания. Амплитуда, частота и фаза гармонических колебаний. Уравнение гармонических колебаний. Колебания груза на пружине. Малые колебания математического и физического маятников. Комплексная и векторная формы представления колебаний. Сложение колебаний. Биения. Кинетическая и потенциальная энергия колеблющегося тела. Затухающие колебания. Коэффициент затухания, логарифмический декремент, добротность. Вынужденные колебания под действием синусоидальной силы. Ам-
}		}	плитуда и фаза при вынужденных колебаниях. Резонанс.
	12- 13	4	Механические волны. Волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны. Колебания струны. Одномерное волновое уравнение. Волны в упругой среде. Энергия упругой волны. Вектор Умова.
3	14	2	Молекулярно-кинетическая теория строения вещества. Статистические распределения молекул газа по скоростям и энергиям. Барометрическая формула. Распределение Больцмана. Некоторые сведения из теории вероятностей. Распределение Максвелла. Средняя кинетическая энергия молекул. Скорости теплового движения.
	15-	4	Термодинамическое описание процессов.
	16		Тепловое движение атомов и молекул. Температура. Уравнение состояния идеального газа. Внутренняя энергия системы. Первое начало термодинамики. Обратимые и необратимые процессы. Равновесные процессы в идеальном газе. Коэффициент полезного действия тепловой машины. Порядок и беспорядок в природе. Энтропия. Второе начало термодинамики. Теплоемкость.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия			
1	1	2	Кинематика материальной точки. Кинематика твердого тела.			
	2	2	Динамика материальной точки.			
	3	2	Законы сохранения импульса и механической энергии.			
2	4	2	Контрольная работа № 1			
	5	2 Момент импульса, момент силы. Динамика твердого тела.				
	6	2	Колебания.			
3	7-8	4	Первое начало термодинамики.			
			Контрольная работа № 2			

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1	4	Свободное падение в гравитационном поле.
			Изучение законов равноускоренного движения на машине Атвуда.
	2	4	Законы столкновений.
1.			Изучение упругих свойств пружины.
			Центробежная сила.
2	3	4	Изучение колебаний связанных маятников.
			Колебания струны.
	4	4	Определение момента инерции твердого тела и проверка теоремы
			Штейнера.
			Изучение динамики вращательного движения твердого тела вокруг
			неподвижной оси.
			Основное уравнение динамики вращательного движения вокруг не-
			подвижной оси.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	7	Работа с учебной литературой: работа с конспектами лекций, учебника-
		ми и учебными пособиями.
	5	Работа с внешними электронными ресурсами.
	7	Работа с электронными модулями индивидуальной работы студентов
	4	Подготовка к лабораторным занятиям: подготовка конспекта лаборатор-
		ной работы, изучение теоретического материала, схемы эксперимента,
		метода обработка экспериментальных данных, подготовка ответов на
		контрольные вопросы.
	6	Выполнение домашних заданий для освоения тем практических занятий.
	2	Подготовка к контрольной работе №1.
2	2	Работа с учебной литературой: работа с конспектами лекций, учебника-
		ми и учебными пособиями.
	1	Работа с внешними электронными ресурсами.
	2	Работа с электронными модулями индивидуальной работы студентов
		(ЭМИРС): изучение материалов ЭМИРС, ответы на тестовые вопросы.
	4	Подготовка к лабораторным занятиям: подготовка конспекта лаборатор-
		ной работы, изучение теоретического материала, схемы эксперимента,
		метода обработка экспериментальных данных, подготовка ответов на контрольные вопросы.
	6	Выполнение домашних заданий для освоения тем практических занятий.
	3	Подготовка к контрольным мероприятиям: к контрольной работе №2 и к
		рубежному контролю.
	4	Выполнение учебного задания «Сложение взаимно перпендикулярных
		гармонических колебаний».
3	7	Работа с учебной литературой: работа с конспектами лекций, учебника-
		ми и учебными пособиями.
	4	Выполнение практико-ориентированного задания
	1	Работа с внешними электронными ресурсами.
	5	Работа с электронными модулями индивидуальной работы студентов
		(ЭМИРС): изучение материалов ЭМИРС, ответы на тестовые вопросы.
_	6	Выполнение домашних заданий для освоения тем практических занятий.
	4	Подготовка к контрольной работе №2

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ CA-МОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: http://orioks.miet.ru)

Модуль 1. «Кинематика. Динамика материальной точки. Законы сохранения»

Материалы с кратким изложением лекционного курса для подготовки к практическим и лабораторным занятиям и экзамену.

Методическое пособие для практических занятий и подготовки к контрольным мероприятиям и экзамену.

Методическое указание студентам (МУС) «Внешние электронные элементы» для дополнительной самостоятельной работы, углубленного изучения учебного материала и помощи в выполнении заданий по практическим занятиям, лабораторным работам и подготовки к контрольным мероприятиям и промежуточной аттестации:

Электронные модули индивидуальной работы студентов (ЭМИРС) для подготовки к практическим занятиям, контрольным мероприятиям и экзамену.

Модуль 2. «Динамика твердого тела. Релятивистская механика. Механические колебания, механические волны»

Материалы с кратким изложением лекционного курса для подготовки к практическим, лабораторным занятиям и экзамену.

Методическое пособие для практических занятий и подготовки к контрольным мероприятиям и экзамену.

Электронные модули индивидуальной работы студентов (ЭМИРС) для подготовки к практическим занятиям, контрольным мероприятиям и экзамену.

Методическое указание студентам (МУС) «Внешние электронные элементы» для дополнительной самостоятельной работы, углубленного изучения учебного материала и помощи в выполнении заданий по практическим занятиям, лабораторным работам и подготовки к контрольным мероприятиям и промежуточной аттестации:

Методическое указание студентам (МУС) «Учебное задание «Сложение взаимно перпендикулярных гармонических колебаний» для отработки навыков самостоятельной работы, самоконтроля и помощи в выполнении индивидуальных заданий и для подготовки к докладам и презентациям:

Модуль 3. «Молекулярная физика»

Материалы с кратким изложением лекционного курса для подготовки к практическим, лабораторным занятиям и экзамену.

Методическое пособие для практических занятий и подготовки к контрольным мероприятиям и экзамену.

Электронные модули индивидуальной работы студентов (ЭМИРС) для подготовки к практическим занятиям, контрольным мероприятиям и экзамену:

Методическое указание студентам (МУС) «Внешние электронные элементы» для дополнительной самостоятельной работы, углубленного изучения учебного материала и помощи в выполнении заданий по практическим занятиям, лабораторным работам и подготовки к контрольным мероприятиям и промежуточной аттестации.

6.ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Савельев И.В. Курс общей физики [Электронный ресурс] : В 5-ти т.: Учеб.пособие. Т. 1 : Механика / И. В. Савельев. 5-е изд. СПб. : Лань, 2011. 224 с. 5-е изд. СПб. : Лань, 2011. 224 с. URL: https://e.lanbook.com/book/704 (дата обращения: 10.04.2023). ISBN 978-5-8114-1207-5.
- 2. Савельев И.В. Курс общей физики [Электронный ресурс] : В 5-ти т.: Учеб.пособие. Т. 3 : Молекулярная физика и термодинамика / И. В. Савельев. 5-е изд. СПб. : Лань, 2011. 224 с. 5-е изд. СПб. : Лань, 2011. 224 с. URL: https://e.lanbook.com/book/706 (дата обращения: 10.04.2023). ISBN 978-5-8114-1209-9.
- 3. Иродов И.Е. Механика. Основные законы: Учеб. пособие для вузов / И.Е. Иродов. 13-е изд. М.: Бином. Лаборатория знаний, 2017. 312 с. (Технический университет. Общая физика). Обновленное электронное издание. URL: https://e.lanbook.com/book/94115 (дата обращения: 10.04.2023). ISBN 978-5-9963-0063-1
- 4. Иродов И.Е. Физика макросистем. Основные законы (Электронный ресурс]: Учеб. пособие для вузов / И.Е. Иродов. 8-е изд., электронное. М.: Издательство "Лаборатория знаний" (ранее "БИНОМ. Лаборатория знаний"), 2020. 210 с. URL: https://e.lanbook.com/book/135536 (дата обращения: 10.04.2023). ISBN 978-5-00101-826-1
- 5. Иродов И.Е. Волновые процессы. Основные законы: Учеб. пособие для вузов / И.Е. Иродов. 7-е изд. М.: Издательство "Лаборатория знаний" (ранее "БИНОМ. Лаборатория знаний"), 2020. 266 с. (Технический университет). URL: https://e.lanbook.com/book/135487 (дата обращения: 10.04.2023). ISBN 978-5-00101-673-1
- 6. Иродов И.Е. Задачи по общей физике [Электронный ресурс]: Учеб. пособие для вузов / И.Е. Иродов. 11-е изд., электронное. М.: Бином. Лаборатория знаний, 2017. 434 с. URL: https://e.lanbook.com/book/94101 (дата обращения: 10.04.2023). ISBN 978-5-00101-491-1.
- 7. Федоренко И.В. Механика. Молекулярная физика: Сборник тестовых заданий по физике / И.В. Федоренко; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2022. 64 с. Имеется электронная версия издания.
- 8. Лабораторные работы по курсу общей физики "Механика" [Текст] : [Метод.пособие] / И. Н. Горбатый [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. А.Б. Спиридонова. М. : МИЭТ, 2015. 180 с. Имеется электронная версия издания.
- 9. Сивухин Д.В. Общий курс физики: Учеб. пособие. Т. 1: Механика / Д.В. Сивухин. 4-е изд., стер. электронное. М.: Физматлит, 2010. 560 с. URL: https://e.lanbook.com/book/2313 (дата обращения: 10.04.2023). ISBN 5-9221-0225-7.
- 10. Сивухин Д.В. Общий курс физики: Учеб. пособие. Т. 2: Термодинамика и молекулярная физика / Д.В. Сивухин. 5-е изд., испр. М.: Физматлит, 2006. 544 с. URL: https://e.lanbook.com/book/2316 (дата обращения: 10.04.2023). ISBN 5-9221-0601-5.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1 Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 10.04.2023). Режим доступа: для авторизированных пользователей МИЭТ.
- 2. Наука.Club = Nauka.Club : образовательный портал. [б.м.] : Образовательный портал для школьников и студентов, 2018 . URL: https://nauka.club/ (дата обращения: 10.04.2023). Режим доступа: свободный. Текст: электронный.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, основанное на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий и самостоятельной работы студентов формами и видами взаимодействия преподавателей и обучающихся в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды OPИOKC. (URL: http://orioks.miet.ru)

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: разделы ОРИОКС «Домашние задания», «Новости», электронная почта, личный сайт преподавателя iv-fedorenko.ru.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в формах: видеолекции, презентации.

Тестирование проводится в OPИOKC (MOODLe), а также используются внешний электронный ресурс Google Forms.

При проведении занятий и для самостоятельной работы используются При проведении занятий и для самостоятельной работы используются **внешниэлектронные ресурсы** в формах:

Лекторий МФТИ, лекции по курсу «Механика»

URL: https://mipt.lectoriy.ru/lecture/Physics-Mechanics-L01-Ovchin-080901.01 (дата обращения 10.04.2023)

Сайт Федоренко И.В.

URL: http://iv-fedorenko.ru (дата обращения 10.04.2023)

Сервисы youtube:

НИЯУ МИФИ. Опыты по физике:

URL: https://www.youtube.com/watch?v= 0y J5KqQA8, (дата обращения 10.04.2023)

URL: https://www.youtube.com/watch?v=9pjB7Rq534c (дата обращения 10.04.2023)

URL: https://www.youtube.com/watch?v=GRWf3IsgVl4 (дата обращения 10.04.2023)

URL: https://www.youtube.com/watch?v=m1Huk8KD-bc (дата обращения 10.04.2023

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учеб-		
ных аудиторий и	Оснащенность учебных аудиторий и	Перечень про-
помещений для са-	помещений для самостоятельной рабо-	граммного обес-
мостоятельной ра-	ты	печения
боты		
Учебная аудитория	Мультимедийное оборудование:	Академические ли-
(лекционные занятия)	Компьютер	цензии на ПО по
(ауд. 1202мм)	Моноблок Lenovo F0AM0092RK	проекту Azure Dev
	Проектор Panasonic PT-VW535N	Tools for Teaching
	Экран Mediavisor	(Microsoft)
	Экран рулонный настенный,	Microsoft Office
	телевизор Panasonic TX-85XR940	Kaspersky
	Телевизор LG 55UF771V	
	Клавиатура Lenovo SK-8861	
	Мышь Lenovo ZTM600	
	Радиосистема Shure BLX88E K3E	
	Микрофон GAL VM-175	
	Акустика JBL PRX700	
Учебная аудитория	Специального оснащения не требуется	ПО не требуется
(практические заня-		
тия)		
Лаборатория	Лабораторная установка "Изучение закона	Академические ли-
«Механики-1,2»	Гука"	цензии на ПО по
ауд. № 3335 а, б	Лабораторная установка: "Изучение свя-	проекту Azure Dev
	занных маятников" с использованием пер-	Tools for Teaching
	сонального компьютера	(Microsoft)
7/	Лабораторная установка "Изучение теоре-	Office
	мы Штейнера"	
	Лабораторная установка "Изучение цен-	
	тробежной силы"	
	Лабораторный комплекс: Изучение сво-	
	бодного падения	
	Лабораторная установка "Колебания	No.
	струн"	
	Лабораторный комплекс: Изучение зако-	
	нов столкновения с использованием де-	
	монстрационной дорожки интерфейса с	
	использованием персонального компьюте-	
	pa.	
	Лабораторный комплекс: Момент силы и	
	угловой момент.	
	Лабораторный стенд для изучения момен-	
	та инерции и углового ускорения с исполь-	

Наименование учеб- ных аудиторий и помещений для са- мостоятельной ра- боты	Оснащенность учебных аудиторий и помещений для самостоятельной рабо- ты	Перечень про- граммного обес- печения
*	зованием управляющего интерфейса и персонального компьютера	
Помещение для само- стоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в ОРИОКС	Azure, Open Office, браузер Mozilla Firefox или Google Chrome

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по подкомпетенции ОПК-1. ФизМТ Способен применять фундаментальные знания, полученные в области механики и термодинамики и использовать их при решении задач в области естественных наук

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина изучается в течение одного семестра. Она включает:

- лекции 1 раз в неделю;
- практические занятия (семинары) 1 раз в 2 недели;
- лабораторные работы 2-х часовые занятия 1 раз в 2 недели;
- консультации 1 раз в неделю, которые проводятся лектором потока и преподавателями, ведущими практические занятия.

Посещение лекций, практических занятий и лабораторных работ является обязательным. Посещение консультаций необязательное, за исключением тех случаев, когда преподаватель персонально приглашает студента на консультацию.

Содержание дисциплины состоит из трех модулей, которые изучаются последовательно:

- кинематика, динамика материальной точки, законы сохранения;
- динамика твердого тела, релятивистская механика, механические колебания, механические волны;
 - молекулярная физика.

Каждый модуль является логически завершенной частью курса. Успешность освоения каждого модуля оценивается по результатам выполнения обязательных контрольных мероприятий.

Для организации учебной работы студентов в начале каждого семестра предоставляются следующие учебно-методические материалы:

- план лекций и практических занятий на семестр с указанием тем лекций со ссылками на параграфы или страницы учебников и учебных пособий, содержащих соответствующий материал, темы практических занятий и номера заданий из сборников задач для решения в аудитории или самостоятельно;
 - график выполнения лабораторных работ;
 - график и виды контрольных мероприятий;
 - список рекомендуемой учебно-методической литературы;
- практико-ориентированные задания на опыт деятельности, представление и защита результатов которого происходит на одном из практических занятий.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система. .

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 30 баллов), рубежный контроль (до 5 баллов), выполнение каждой лабораторной работы (в сумме до 20 баллов), посещаемость занятий (в сумме до 4 баллов), активность в семестре (до 1 балл) и итоговое мероприятие в форме экзамена (до 40 баллов). По сумме баллов выставляется итоговая оценка по предмету.

Структура и график контрольных мероприятий приведены ниже в таблице (см. также журнал успеваемости на OPИOКС// URL: http://orioks.miet.ru/).

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка	
Менее 50	2	
50 – 69	3	
70 – 85	4	
86 – 100	5	

Разработчик:		
Доцент Института ФПМ, к.фм.н	Egail -	/ И.В. Федоренко/

Рабочая программа дисциплины «Физика. Механика. Термодинамика» по направлению подготовки 02.03.01 «Математика и компьютерные науки», направленности (профилю) «Компьютерная математика и анализ данных» разработана в Институте ФПМ и утверждена на заседании Ученого Совета института В/- ОЗ 2024 года, протокол № 3 Директор Института ФПМ Лист согласования

Рабочая программа согласована с выпускающей кафедрой ВМ 1

Заведующий кафедрой ВМ 1 Директор Инстиций кафедрой ВМ 1 / А.А. Прокофьев /

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК / И.М. Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

/ Т.П. Филиппова /