Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александро Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Обедеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.07.2025 11:02:40

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балаг

___ А.Г. Балашов

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физико- химия наноструктурированных материалов»

Направление подготовки - 22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) - «Технологии материалов микроэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующей компетенции образовательной программы:

Компетенция **ПК-3** «Способен прогнозировать влияние микро- и нано- масштаба на механические, физические, химические и другие свойства веществ и материалов» сформулирована на основе профессионального стандарта **26.006** «Специалист по разработке наноструктурированных композиционных материалов»

Обобщенная трудовая функция - А [6] Лабораторно-аналитическое сопровождение разработки наноструктурированных композиционных материалов

Трудовые функции - А/01.6 Выполнение работ по поиску экономичных и эффективных методов производства наноструктурированных композиционных материалов с заданными свойствами

А/02.6 Анализ сырья, материалов на соответствие стандартам и техническим условиям, используемым в производстве, и обработка экспериментальных результатов

Подкомпетен-		
ции,	Задачи профессио-	Индикаторы достижения подкомпетен-
формируемые в	нальной деятельности	ций
дисциплине		
ПК-3.ФХНМ	научно – исследова-	Знания основ термодинамики нанораз-
Способен при-	тельский тип задач:	мерных систем, закономерностей термо-
менять знания о	Совершенствование	динамических размерных эффектов, в том
синтезе и анали-	процессов измерений	числе, влияния геометрических парамет-
зе нанострукту-	параметров и моди-	ров на свойства объектов, факторов, опре-
рированных ма-	фикации свойств	деляющих термодинамические параметры
териалов	наноматериалов и	и физические характеристики наноматери-
	наноструктур;	алов
	Лабораторно-	Умения применять полученные знания
	аналитическое сопро-	при теоретическом анализе и эксперимен-
	вождение разработки	тальном исследовании физико-химических
	наноструктурирован-	процессов, лежащих в основе методов
	ных композиционных	синтеза наноструктурированных материа-
	материалов	лов, рассчитывать основные термодина-
		мические параметры наноструктур
		Опыт прогнозирования вклада поверх-
		ностных свойств в свойства дисперсных
		систем и учета этого вклада в технологии
		изготовления наноматериалов; структуры
		и свойств наноматериалов, основываясь на
		современных представлениях о размерно-
		зависимых эффектах

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы (является элективной).

Входные требования к дисциплине:

Изучению дисциплины предшествует формирование компетенций в дисциплинах «Физика», «Химия», «Физическая химия», «Физические основы наноэлектроники и наносистем», «Общее материаловедение».

Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются изучением дисциплины «Низкотемпературные методы синтеза наноструктурированных материалов», выполнением индивидуальных заданий практики и служат основой для выполнения выпускной квалификационной работы (ВКР).

Входные требования к дисциплине — знания фундаментальных разделов и законов физической химии и основных экспериментальных методов исследования физико-химических свойств веществ, основных классов современных наноматериалов и наноструктур, опыт прогнозирования структуры и свойств наноматериалов, основываясь на современных представлениях о размерно-зависимых эффектах.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		ľЪ	сть	К	Сонтактная ра	бота		
Курс	Семестр	Общая трудоёмкост (ЗЕ)	Общая трудоёмкост (часы)	Лекции (часы)	Практическая под- готовка при прове- дении лаборатор- ных работ (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
3	6	4	144	16	16	16	60	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

]	Контак	тная работа	В	
№ и наименование модуля	Лекции	Практические занятия	Практическая подготовка при проведении ла- бораторных ра- бот (часы)	Самостоятельная работа	Формы текущего кон- троля
1. Основные понятия о наноразмерном состоянии вещества. Свойства наноматериалов	2	2	8	16	Защита лабораторных работ 1-2 Контрольная работа 1

2. Квантовые эффекты в системах с низкой размерностью	4	4	4	12	
3.Термодинамика дисперсных систем	4	8	4	20	Контрольная работа 2 Опрос Защита лабораторных работ 3-4
4.Углеродные нанома- териалы	6	2	0	12	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем заня- тий (часы)	Краткое содержание		
1	1	2	Основные понятия о наносостоянии вещества. Свойства наноматериа-		
			лов. Развитие представлений о наносостоянии вещества и наук о		
			нанотехнологии и наноматериалах. Классификация наноматериалов.		
2	2	2	Размерные эффекты. Период решетки. Оптические свойства. Кванто-		
			вые эффекты в системах с низкой размерностью.		
2	3	2	Фононный спектр. Теплоемкость.		
3	4	2	Термодинамика дисперсных систем. Термодинамика малоразмерных		
			систем. Термодинамические основы образования наноструктур.		
3	5	2	Поверхностное плавление. Термодинамические основы зародышеоб-		
			разования. Фазовые диаграммы наноразмерных систем.		
4	6	2	Основные углеродные наноматериалы. Общая классификация		
4	7	2	Фуллерены, углеродные нанотрубки		
4	8	2	Физические свойства углеродных нанотрубок		

4.2. Практические занятия

№ модуля дисциплины	№ практиче- ского занятия	Объем занятий (часы)	Краткое содержание	
1	1	2	Дисперсные системы: характеристики.	
2	2	2	Квантовые размерные эффекты	
2	2 3 2 Некоторые примеры влияния размерных эффектов на свойства м риалов: период решетки и теплоемкость.		Некоторые примеры влияния размерных эффектов на свойства материалов: период решетки и теплоемкость.	
3	4	2	Влияние кривизны поверхности на химическую активность. Уравне-	

			ние Кельвина.
			Поверхностные явления. Адгезия, смачивание и растекание. Краевой
3	5-6	4	угол и теплота смачивания. Гидрофобные и гидрофильные поверхно-
			сти. Модели смачивания: Венцеля и Касси.
2	3 6-7 4 Адсорбция. Теория адсорбции газов и паров твердыми телами. Тео Лэнгмюра и БЭТ		
3			Лэнгмюра и БЭТ
4	8	2	Морфологические формы углеродных нитевидных наночастиц.

4.3. Практическая подготовка при проведении лабораторных работ

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы			
1	1	4	Определение оптических и структурных свойств тонких пленок мето-			
			дом эллипсометрии			
1	2	4	Определение оптических и структурных свойств пористых наноматериалог			
			методом эллипсометрии			
2	3	4	Определение зависимости оптической ширины запрещенной зоны уль-			
			тратонких пленок халькогенидов металлов от их толщины			
3	4	4	Изучение зависимости краевого угла смачивания поверхности нанома-			
			териалов от шероховатости			

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС	
1-4	8	Самостоятельная доработка конспекта лекции с применением учеб-	
		ного пособия и дополнительной литературы	
1-4	8	Решение практических задач по тематике модулей	
3-4	6	Подготовка к опросу.	
1-3	8	Подготовка к контрольным работам.	
1,3	12	Подготовка к лабораторным работам.	
1-4	18	Подготовка к экзамену	

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Все материалы для подготовки к практическим занятиям представлены в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/)

Модуль 1 «Основные понятия о наноразмерном состоянии вещества. Свойства наноматериалов»

✓ Материалы для изучения теории в рамках подготовки к практическим и лабораторным занятиям, проработки лекций и подготовки к контрольной работе 1.

Модуль 2 «Квантовые эффекты в системах с низкой размерностью»

✓ Материалы для изучения теории в рамках подготовки к практическим занятиям и лабораторным занятиям, проработки лекций и подготовки к контрольной работе 1.

Модуль 3 «Термодинамика дисперсных систем»

Учебно-методические материалы для подготовки к практическим и лабораторным занятиям, подготовки к контрольной работе 2 и опросу.

Модуль 4 «Углеродные наноматериалы»

Учебно-методические материалы для подготовки к практическим занятиям и к опросу, для проработки лекций.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. *Гаврилов С.А.* Учебное пособие по дисциплине "Физикохимия наноструктурированных материалов" [Текст] / С. А. Гаврилов, Д. Г. Громов, А. Е. Миронов; М-во образования и науки РФ, МГИЭТ (ТУ). М.: МИЭТ, 2011. 180 с.
- 2. Лабораторный практикум по дисциплине "Физика и химия поверхности" / С. А. Гаврилов [и др.]; М-во образования и науки РФ, МГИЭТ (ТУ). М.: МИЭТ, 2011. 24 с.
- 3. *Гаврилов С.А.* Электрохимические процессы в технологии микроэлектроники и наноэлектроники: Учеб. пособие / С. А. Гаврилов, А. Н. Белов. М.: Высшее образование, 2009. 257 с.
- 4. Зимон А.Д. Коллоидная химия: Учеб. для вузов / А.Д. Зимон, Н.Ф. Лещенко. 3-е изд., испр. и доп. М.: Агар, 2001. 319 с. ISBN 5-89218-127-8

Периодические издания

1. JOURNAL OF APPLIED PHYSICS / American Institute of Physics. - USA : AIP, [б.г.]. – URL: http://scitation.aip.org (дата обращения: 11.12.2024). – Режим доступа: из локальной сети МИЭТ

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

1. **eLIBRARY.RU: научная электронная библиотека**: сайт. – Москва, 2000. – URL: https://elibrary.ru (дата обращения: 11.12.2024). – Режим доступа: для зарегистрир. пользователей.

- 2. **SCOPUS:** Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.11.2024). Режим доступа: для авториз. пользователей МИЭТ
- 3. **Web of Science:** [наукометрическая база данных]: сайт. URL: http://apps.webofknowledge.com (дата обращения: 20.11.2024). Режим доступа: для зарегистрир. пользователей.
- 4. **База American Chemical Society:** [некоммерческое научное издательство]: сайт. Американское химическое общество, 2020. URL: http://pubs.acs.org (дата обращения: 11.12.2024). Режим доступа: свободный.
- 5. **Информационно-поисковая система Федерального института промышленной собственности:** сайт. Москва, 2009-2019. URL: https://www1.fips.ru/iiss/ (дата обращения: 21.11.2024). Режим доступа: для зарегистрир. пользователей.
- 6. ECS Digital Library: [научное издательство IOP Publishing]: сайт. 2020. URL: http://ecsdl.org/ (дата обращения: 20.11.2024)

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (основано на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде).

При выполнении лабораторных работ используется **модель обучения** ротация станций: допуск и расчеты с помощью компьютера, выполнение эксперимента в лаборатории, очное взаимодействие в малых группах, и защиты лабораторных перед преподавателем. Студенты выполняют задания по вариантам. После выполнения расчетов (и проверки их правильности преподавателем) студенты обмениваются результатами и дополняют отчет по лабораторной работе данными других членов малой группы. Таким образом, студенты видят полную картину, как влияет тот или иной фактор на исследуемую величину. Студенты обсуждают между собой в малых группах, какие закономерности можно выявить и почему, индивидуально оформляют отчет по лабораторной работе комплексными выводами, после чего защищают лабораторную работу перед преподавателем.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние электронные ресурсы:** электронные презентации, видеоролики мастер-классов по использованию оборудования для выполнения лабораторных работ и по выполнению расчетных заданий, тестирования в MOODLe).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учеб- ных аудиторий и по- мещений для само- стоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное оборудование	OC Microsoft
		Windows
		MS Office
Учебная аудитория	Компьютер с ПО и возможностью под-	OC Microsoft
№4136 «Лаборатория	ключения к сети Интернет и обеспече-	Windows
микроскопии»	нием доступа в электронную информа-	MS Office
	ционно-образовательную среду МИЭТ,	браузер
	проектор	
Учебная аудитория	- Спектрально-элипсометрический	Windows
№4341 «Лаборатория	комплекс "ЭЛЛИПС-1881А	Microsoft Office
дисперсных систем»	- Гониометр Open Science G1345	браузер
	- Компьютеры с ПО и возможностью	
	подключения к сети Интернет и обеспе-	
	чением доступа в электронную инфор-	
	мационно-образовательную среду МИ-	
	ЭТ	
Помещение для само-	Компьютерная техника с возможностью	OC Microsoft
стоятельной работы	подключения к сети «Интернет» и обес-	Windows
	печением доступа в электронную ин-	MS Office
	формационно-образовательную среду	браузер
	ТЄИМ	

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-3.ФХНМ «Способен применять знания о синтезе и анализе наноструктурированных материалов».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOКС// URL: http://orioks.miet.ru.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В рамках рассматриваемого курса предусмотрены следующие формы учебных занятий:

- *лекции*, цель которых состоит в рассмотрении теоретических вопросов дисциплины;
- *практические занятия*, цель проведения которых углубленное изучение некоторый разделов курса, а также контроль выполнения студентами внеаудиторной самостоятельной работы
- *пабораторные занятия*, цель которых экспериментальное подтверждение и проверка существующих теоретических положений, формирование профессиональных компетенций, умений и навыков проведения экспериментов, обработки и анализа результатов экспериментов.
- внеаудиторная самостоятельная работа, цель которой закрепление полученных знаний, подготовка к практическим (лабораторным) занятиям, приобретение опыта самостоятельной работы с различными источниками информации.

В учебной программе дисциплины предусмотрено 4 модуля. Модуль 1 «Основные понятия и классификация наноструктурированных материалов» являются базовым для всех последующих. Изучение модуля 2 «Термодинамика наноразмерных систем» обязателен для дальнейшего изучения модуля 4 «Фазовые равновесия в наносистемах». Модуль 3 «Дисперсные системы» может изучаться параллельно модулю 2 и модулю 4.

Самостоятельная работа студентов направлена на проработку и закрепление лекционного материала, и предварительную подготовку к практическим занятиям: подготовка к лабораторным работам и решение практических задач по материалам пройденных модулей. Одним из решающих условий качественного обучения студентов является их *активная* работа на лекциях.

Самостоятельная доработка конспекта лекции представляет собой работу студентов с материалом лекции: студенты выписывают основные положения лекции и формируют по ней краткое резюме, которое разбирается на практическом занятии. Решение практических задач по материалам модулей предполагает самостоятельную проработку материалов семинаров в ходе решения типовых задач модуля. Опыт деятельности, сформированный при выполнении этих заданий, проверяются при выполнении аудиторных контрольных работ.

При работе в **лабораториях практикума** студентам перед выполнением курса лабораторных работ необходимо ознакомиться с правилами по технике безопасности и строго соблюдать и выполнять их требования, а также указания преподавателя (инженерно-технического персонала).

При защите лабораторной работы студент должен показать понимание сущности физико-химических явлений в экспериментальных материалах, объяснить полученные результаты и сделать выводы. Кроме того, студент должен правильно отвечать на контрольные вопросы по лабораторной работе, без использования каких-либо литературных источников и теоретических материалов лабораторной работы и без предварительной подготовки.

Одной из форм обучения, подготовки к практическому занятию, контрольной работе, опросу, защите лабораторных работ является *консультация у преподавателя*. Преподаватель разъяснит конкретные вопросы, вызвавшие затруднения, а если этот вопрос задан в качестве домашнего задания, поможет подобрать соответствующую литературу, раскрыть профессиональный аспект рассматриваемой проблемы.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительнбалльная система. Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 60 баллов), активность в семестре (в сумме 10 баллов) и сдача экзамена (30 баллов). По сумме баллов выставляется итоговая оценка по предмету.

Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/

Получение минимальных баллов по всем контрольным мероприятиям в течение семестра обязательно.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 – 69	3
70 – 85	4
86 – 100	5

Разработчики:

Доцент Института ПМТ, к.т.н. _______/А.А.Дронов /

Ст. преп. Института ПМТ _______/Ю.В.Назаркина.

направлению подготовки 22.03.01 «Материаловедение и технологии материалов», направленности (профилю) «Технологии материалов микроэлектроники» разработана в Институте ПМТ и утверждена на заседании Ученого совета Института 19 декабря 2024 года, протокол № 16 /С.В.Дубков/ Директор Института ПМТ Лист согласования Рабочая программа согласована с Передовой инженерной школой /А.Л.Переверзев / Директор ПИШ Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества /И.М.Никулина / Начальник АНОК Рабочая программа согласована с библиотекой МИЭТ Лу /Т.П.Филиппова/ Директор библиотеки

Рабочая программа дисциплины «Физико- химия наноструктурированных материалов» по