Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александроминистерство науки и высшего образования Российской Федерации

Должность: И.О. Рактора Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 18.06.2025 15:40:27

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по У

И.Г. Игнатова

20 al

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Специальные разделы автоматизации конструкторско-технологического проектирования»

Направление подготовки - 11.03.04 «Электроника и наноэлектроника» Направленность (профиль) – «Автоматизация проектирования изделий наноэлектроники»

ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-5 «Способен разрабатывать функциональные блоки, схемы с современных лингвистических средств и применять использованием при проектировании цифровых и аналоговых систем на системном, функциональном, логическом и физическом уровнях» сформулирована на основе профессионального **стандарта 40.040** «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков»

Обобщенная трудовая функция: «Разработка В – топологии, физического представления стандартных ячеек библиотеки»

Трудовая функция: В/01.6 – «Размещение и соединение элементов электрических схем стандартных ячеек библиотеки»

Подкомпетенции, формируемые в	Задачи профессиональной деятельности	Индикаторы достижения компетенций		
дисциплине				
ПК-5.СРАКТП	Использование	<i>Знания</i> принципов		
Способен	вычислительных средств	конструирования электронных		
разрабатывать	для решения задач	схем и систем с использованием		
функциональные	топологического	средств САПР на физическом		
блоки, схемы с	проектирования цифровых	уровне.		
использованием	интегральных схем.	<i>Умения</i> разрабатывать		
современных средств		функциональные блоки, схемы		
топологического		для цифровых и аналоговых		
проектирования и		систем на физическом уровне.		
применять их при		<i>Опыт</i> применения средств		
проектировании		САПР на физическом уровне.		
цифровых и				
аналоговых систем на				
физическом уровне.				

Компетенция ПК-4 «Способен применять углубленные знания в области маршрута проектирования приборов, схем, устройств и установок электроники и наноэлектроники» сформулирована на основе профессионального стандарта 40.040 «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков» Обобщенная трудовая функция: В -«Разработка топологии, физического

представления стандартных ячеек библиотеки»

Трудовая функция: В/01.6 – «Размещение и соединение элементов электрических схем стандартных ячеек библиотеки»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций/подкомпетенций
ПК-4.СРАКТП	Применение углубленных	Знания основных маршрутов
Способен применять	знаний в области	топологического проектирования
углубленные знания в	маршрута	микро- и наноэлектронных
области маршрута	топологического	приборов, схем, систем.
топологического	проектирования приборов,	<i>Умения</i> использовать средства
проектирования	схем, устройств	САПР для автоматизации
приборов, схем,	электроники и	маршрута топологического
устройств	наноэлектроники.	проектирования.
электроники и		Опыт использования САПР для
наноэлектроники.		топологического проектирования
		электронных схем и систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений образовательной программы (дисциплина по выбору).

Изучение дисциплины базируется на следующих ранее изучаемых дисциплинах: «Булева алгебра», «Дискретная математика», «Общая физика. Оптика», «Технология интегральных микросхем», «Физика полупроводниковых приборов».

Материалы, изучаемые в данной дисциплине, используются при прохождении производственной практики и подготовке бакалаврской выпускных работ.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

	Е Е Контактная				стная раб	ота		
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкост (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
4	7	4	144	32	16	16	44	Экз(36), КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	актная р	абота	іая		
№ и наименование модуля	Лекции	Лекции Практические занятия Лабораторные		Самостоятельн работа	Формы текущего контроля	
				15	Защита лабораторных работ	
1. Методология				10	Написание контрольных работ	
физического	32	16	16	10	Прохождение тестирования	
проектирования	32	10	10	5	Защита курсового проект	
aipo c kimpobumni				4	Сдача практико-	
					ориентированного задания	

4.1. Лекционные занятия

№ модуля	дисциплины	№ лекции	Объем занятий	(часы)	Краткое содержание		
1		1	2	2	Маршрут проектирования цифровых СБИС. Понятие о библиотечных		
					элементах. Этапы проектирования топологии. Критерии проекгирования.		
					Методологии проектирования. Заказное, полузаказное проектирование		
					топологии.		
		2	2		Декомпозиция. Постановка задачи. Модели объекта. Критерии		
					декомпозиции. Классификация методов декомпозиции. Метод		
					кластеризации. Алгоритм Кернигана-Лина. Алгоритм Фидуччи-Маттеуса.		
		3	2		Размещение. Постановка задачи. Планировка и размещение. Критерии		
					размещения. Манхэттенская метрика. Модель квадратичного назначения.		
					Алгоритм обратного размещения. Недостатки итерационных алгоритмов		
					размещения. Проблема локального минимума. Стохастические методы		
					оптимизации. Основные принципы алгоритма моделирования отжига.		
		4	2		Размещение алгоритмом моделирования отжига. Параметры. Оценка		
					эффективности. Силовой алгоритм размещения.		
		5	2		Трассировка цепей. Постановка задачи. Критерии и ограничения.		
					Глобальная и детальная трассировка. Волновой алгоритм трассировки.		
					Модель объекта, дискретное рабочее поле (ДРП). Модификации волновых		
					методов. Кодирование волнового фронта. Использование путевых		
					координат.		
		6	2		Метод встречных волн. Ограничение области распространения волны.		
					Введение приоритетов направлений. Алгоритм Рабина. Лучевой алгоритм.		
					Алгоритм Винтера. Алгоритмы ГТ-1, ГТ-2.		

7	2	Канальная трассировка. Основные принципы канальной трассировки.
		Горизонтальные и вертикальные ограничения, графы ограничений,
		раскрытие циклов. Алгоритм левого края. Алгоритм YACR-2.
0	2	Трассировка свичбокса. Пути синтеза топологии и методы решения задачи
8	2	свич- бокса. Эвристический алгоритм трассировки BEAVER.
9 2		Операторный метод. Постановка задачи трассировка в базисе операторов.
		Оптимальный эскиз. Метод построения минимального оператора.
		Отображение эскиза на сетку свичбокса. Трассировка цепей в
		неограниченной области. Трассировка двухтерминальных цепей в
		двусвязной области. Многоуровневая модель трассировки.
10	2	Методологии проектирования. Определения. Примеры различных
		методологий проектирования. Достоинства и недостатки. Области
		применения различных методологий проектирования. Метод стандартных
		ячеек (МСЯ). Метод Рейнгольда.
11	2	Методология иерархического проектирования. Иерархическое
		проектирование.
		Методология Брейера. Модель объекта, принципы синтеза. Достоинства и
		недостатки. Маршрут проектирования, основные проектные процедуры.
12	2	Мозаичная методология проектирования. Модель объекта. Маршрут,
1 4	2	основные проектные процедуры. Преимущества и недостатки
13	2	Программные средства топологического проектирования СБИС. Общая
		характеристика ПО. Основные тенденции в развитии ПО. Фирмы-
		поставщики ПО САПР.
14	2	Программное обеспечение Cadence и Synopsys. Классификация пакетов. ПО
		для топологического проектирования. Программные пакеты для DRC, LVS и
		ERC верификации.
15	2	Проектирование систем на кристалле (СнК). Основные определения и
		принципы проектирование. Отличия СнК от других ИС. Примеры СнК. ІР-
		блок как часть СнК. Создание и интеграция ІР-блоков. Примеры ІР-блоков.
		Современные проблемы и тенденции топологического проектирования.
16	2	Особенности топологического проектирования современных СБИС.
	2	Высокая размерность. Эффекты "глубокого субмикрона": crosstalk, IR-drop,
		электромиграция.

4.2. Практические занятия

№ модуля	дисциплины	№ практического	ятия	Ооъем занятии (часы)	Краткое содержание
	1	1		')	Основные понятия теории графов, задачи на графах. Алгоритм Кодреса. Алгоритм Кернигана-Лина. Алгоритм Фидуччи-Маттеуса.

2	2	Размещение методом плотной укладки (ПУ). Алгоритм построения ПУ.
_		Размещение в ПУ.
3	2	Методы глобальной оптимизации: алгоритм моделирования отжига,
		генетический алгоритм, эволюционный алгоритм.
4 2		Волновые алгоритмы трассировки. Метод встречных волн. Алгоритм
	2	Соукупа.
5	2	Канальная трассировка. Алгоритм левого края. Алгоритм YACR-2.
6 2		Операторная модель трассировки. Метод построения минимального
6	2	оператора. Отображение эскиза на сетку свичбокса.
7	2	Минимальное остовнос дерево. Минимальное ортолинейное дерево
		Штейнера. Основные алгоритмы построения. Синтез цепей синхронизации.
		Основные понятия, постановка задачи
8	2	Оценка задержек межсоединений с помощью эвристики - задержки Элмора.
		Эквивалентная Pi-модель RCL-цепи. Y-delta преобразование RLC цепей для
		обобщенной проводимости.

4.3. Лабораторные занятия

№ модуля	дисциплины	№ лабораторной работы	Объем занятий (часы)	Краткое содержание
1		1	4	Подготовка исходных данных для проектирования, формирование базы
				данных. Запуск программы автоматической планировки кристалла.
				Оценка качества планировки кристалла
		2	4	Запуск программы автоматической трассировки шин земли и питания.
				Оценка результатов.
		3	4	Запуск программы автоматического размещения стандартных ячеек на
				кристалле и оптимизации. Оценка качества размещения.
		4	4	Запуск программы автоматической трассировки цепей.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС			
1	10	Подготовка к лабораторным работам: поиск информации о			
		схемотехнической реализации базовых библиотечных элементов.			
	10	Подготовка к тестированию и.			
	20	Подготовка курсового проекта: поиск информации о методах и			
		алгоритмах проектирования топологии СБИС.			
	10	Подготовка к контрольным заданиям			
	4	Выполнение практико-ориентированного задания			

4.5. Примерная тематика курсовых работ (проектов)

- 1 Решение задачи размещения стандартных ячеек на кристалле с помощью дихотомических методов.
- 2 Решение задачи размещения ячеек на кристалле (заказное проектирование) с помощью силового алгоритма.
- 3 Решение задачи лабиринтной трассировки межсоединений с помощью лучевых алгоритмов.
- 4 Оптимизация быстродействия трассировки за счет использования трассировочных шаблонов.
 - 5 Решение задачи верификации геометрии топологии.
- 6 Программная реализация визуализатора файлов, содержащих топологическое описание схемы, в основных форматах (.lef, .def)

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Специальные разделы автоматизации конструкторско-технологического проектирования»: https://orioks.miet.ru/prepare/ir-science?id_science=1637867

Методические указания студентам по изучению дисциплины «Автоматизация конструкторско-технологического проектирования»: https://orioks.miet.ru/prepare/irscience?id_science=1637867

Модуль 1 «Методология физического проектирования»

- ✓ Материалы для подготовки к тестированию и для выполнения индивидуальных домашних заданий
- ✓ Материалы для изучения теории в рамках подготовки к лабораторным занятиям

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Коршунов А.В. Маршрут проектирования ЦИС. Физический синтез: Учеб. пособие / А.В. Коршунов, С.В. Гусев; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2015. 72 с. ISBN 978-5-7256-0831-1
- 2. Беспалов В.А. Диаграммы двоичных решений в автоматизации проектирования СБИС: Учеб. пособие / В.А. Беспалов, А.Л. Глебов, А.Н. Кононов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2013. 80 с. ISBN 978-5-7256-0743-7
- 3. Гаврилов, С. Методы анализа логических корреляций для САПР цифровых КМОП СБИС / С. Гаврилов. Москва: Техносфера, 2011. 136 с. ISBN 978-5-94836-280-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/73023 (дата обращения: 12.03.2021). Режим доступа: для авториз. пользователей
- 4. Стемпковский А.Л. Методы логического и логико-временного анализа цифровых КМОП СБИС / С.В. Гаврилов, А.Л. Глебов; Ин-т проблем проектирования в микроэлектронике РАН; Под общ. ред. А.Л. Стемпковского. М.: Наука, 2007. 224 с. ISBN 978-5-02-036119-5
- Казеннов Г. Г. Основы проектирования интегральных схем и систем: Учеб. пособие / Г.Г. Казеннов. - М.: БИНОМ. Лаборатория знаний, 2005. - 296 с. - ISBN 5-94774-232-2
- 6. Гагарина Л.Г. Алгоритмы и структуры данных : Учеб. пособие / Л.Г. Гагарина, В.Д. Колдаев; Рец. Ю.Н. Беляков. М. : Финансы и статистика : Инфра-М, 2009. 304 с. ISBN 978-5-279-03351-5
- 7. VLSI Physical Design: From Graph Partitioning to Timing Closure / Kahng Andrew B., Lienig Jens, Markov Igor L., Hu Jin. : Springer, 2011. URL: https://link.springer.com/book/10.1007/978-90-481-9591-6 (дата обращения: 12.12.2020). ISBN 978-94-007-9020-9 (Print); 978-90-481-9591-6 (Online). Текст : электронный

Периодические издания

- 1. Известия вузов. Электроника : Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М. : МИЭТ, 1996 . ISSN 1561 5405
- 2. IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTERGRATED CIRCUITS & SYSTEMS. USA: IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43. Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"

7.ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2019). Режим доступа: для зарегистрир. пользователей
- 2. Электронно-библиотечная система Лань : сайт. Санкт-Петербург, 2011 . URL: https://e.lanbook.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ.
- 3. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 4. ФИПС : Информационно-поисковая система: сайт. Москва, 2009 . URL: https://www1.fips.ru/elektronnye-servisy/informatsionno-poiskovaya-sistema/index.php (дата обращения: 30.09.2019)
- 5. ProQuest : сайт. URL: http://search.proquest.com/ (дата обращения: 30.10.2020). Режим доступа: для авториз. пользователей МИЭТ
- 6. Nano / Springer Nature: сайт. URL: http://nano.nature.com (дата обращения: 30.10.2020). Режим доступа: для авториз. пользователей МИЭТ
- 7. IEEE/IET Electronic Library (IEL) = IEEE Xplore : электронная библиотека. USA ; UK, 1998 . URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения: 28.10.2020). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная полписка"

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, применяется «расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях (лекциях и лабораторных работах) с последующим самостоятельным выполнением индивидуального задания (индивидуальные практические задания к лабораторным работам).

Обучение может реализовываться с применением дистанционных образовательных технологий.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя.

При проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в формах материалов в системе OPИOKC: https://orioks.miet.ru/prepare/ir-science?id_science=1637867.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное	Microsoft (Azure),
	оборудование	Microsoft Office
Учебная аудитория	Учебная доска	Не требуется
Вычислительный класс 4131	ПЭВМ Intel LGA1156 Core	Microsoft (Azure)
	i5-661 с мониторами Ilyama	Libre Office
	и ViewSonic.	
Помещение для	Компьютерная техника с	Microsoft (Azure)
самостоятельной работы	возможностью подключения	
обучающихся	к сети «Интернет» и	
	обеспечением доступа в	
	ОРИОКС	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по компетенции/подкомпетенции **ПК-5.СРАКТП** «Способен разрабатывать функциональные блоки, схемы с использованием современных средств топологического проектирования и применять их при проектировании цифровых и аналоговых систем на физическом уровне»
- 2. ФОС по компетенции/подкомпетенции **ПК-4.СРАКТП** «Способен применять углубленные знания в области маршрута топологического проектирования приборов, схем, устройств электроники и наноэлектроники»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Студенты, изучающие дисциплину, обязаны посетить лекции, выполнить лабораторные работы, принять участие в опросах во время практических занятий.

С целью качественной организации самостоятельной работы студентов проводятся разъяснения материала. Вводное разъяснение проводится лектором дисциплины в начале первой лекции и включает: информацию о структуре и графике контрольных

мероприятий, содержании и порядке проведения контрольных мероприятий, правилах оценивания согласно НБС МИЭТ, учебной литературе и дополнительных информационных источниках, основных требованиях по оценке качества освоения дисциплины, самостоятельной работе студентов, организации и назначении консультаций. На каждой из последующих лекций проводится разъяснение по выполнению заданий для СРС.

Для студентов проводятся консультации. Студентам рекомендуется активно пользоваться консультациями преподавателя: это единственная возможность обучаться индивидуально и выяснить все возникшие вопросы. Кроме этого на консультациях можно защитить лабораторную работу, если не успели на занятии.В процессе изучения курса предполагается самостоятельная работа студента при подготовке к практическим занятиям, использование основной и дополнительной литературы, интернет-ресурсов.

В дисциплине предусмотрено публичное представление заданий на опыт деятельности (практико-ориентированного задания).

По завершению изучения дисциплины предусмотрена промежуточная аттестация в виде экзамена.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме максимум 70 баллов), и экзамена (максимум 30 балла).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий приведены ниже в таблице (см. также журнал успеваемости на OPИOKC, http://orioks.miet.ru/).

РАЗРАБОТЧИК:

Доцент кафедры ПКИМС	5 Ma -	/Г.А. Иванова/

Рабочая программа дисциплины «Специальные разделы автоматизации конструкторско-технологического проектирования» по направлению подготовки 11.03.04 «Электроника и наноэлектроника», направленности (профилю) «Автоматизация проектирования изделий наноэлектроники» разработана на кафедре ПКИМС и утверждена на заседании кафедры $\underline{27}$ ноября $\underline{2020}$ года, протокол № 8

Заведующий кафедрой ПКИМС _______ /С.В. Гаврилов/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с п	дентром подготовки к	аккредитации и
независимой оценки качества		-
Начальник АНОК		/И.М. Никулина
Рабочая программа согласована с библиотекой МИЭТ		
Директор библиотеки	duel-	/ Т.П. Филиппова