Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрович Министерство науки и высшего образования Российской Федерации

Дата подписания: Подгеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет Уникальный программный ключ:

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ Проректор по учебной работе А.Г. Балашов

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Технология материалов микро-, опто- и наноэлектроники»

Направление подготовки - 22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) - «Технологии материалов микроэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция ПК-1 «Способен разрабатывать и обосновывать модернизацию технологических линий, процессов измерений параметров и модификации свойств» **сформулирована на основе профессиональных стандартов:**

40.104 «Специалист по измерению параметров и модификации свойств наноматериалов и наноструктур»

Обобщенная трудовая функция - С [6] Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур

Трудовые функции- C/01.6 Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-1.ТММОНЭ	- Совершенствование	Знания принципов технологий
Способен	процессов измерений	получения наноматериалов и
осуществлять выбор	параметров и модификации	приборных структур на их
методов	свойств наноматериалов и	основе.
модификации состава	наноструктур,	<i>Умение</i> определять основные
материалов,	- Разработка и обоснование	факторы процессов/технологий, а
используемых в	технических требований к	также возможных рисков.
наноэлектронике	модернизации	Опыт разработки технологии
	технологических линий	получения наноматериалов и
		приборных структур на их
		основе

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений, Блока 1 «Дисциплины (модули)» образовательной программы, является элективной.

Входные требования к дисциплине- знания и навыки сформированные в дисциплинах «Технологические среды», «Материалы электронной техники», «Процессы микро- и нанотехнологии».

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	сть	Контан	ктная раб	ота			
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкос (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация	
4	7	2	72	16	-	16	40	ЗаО	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			8		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Общие вопросы технологии материалов микро-,	8	-	8	10	Контрольная работа 1	
опто- и наноэлектроники					Рубежный контроль (Тестирование)	
2. Технология металлов для микро-, опто- и наноэлектроники.	4	-	4	6	Контрольная работа 2	
3. Технология диэлектрических и вспомогательных материалов.	4	-	4	24	Контрольная работа 3 Контроль выполнения индивидуального задания	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1	2	Введение. Общие вопросы и задачи получения чистых и сверхчистых материалов. Современное состояние и проблемы технологии

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание	
			материалов микро-, опто- и наноэлектроники.	
			Общие вопросы технологии материалов. Базовые технологические	
		2	процессы. Принципы очистки и разделения материалов.	
	2	2	Технология получения бора технической и высокой чистоты. Соединения бора.	
	3	2	Технология получения фосфора технической и высокой чистоты.	
	3	2	Соединения фосфора.	
	4	2	Технология получения мышьяка технической и высокой чистоты.	
			Соединения мышьяка.	
	5	2	Технология металлов для микро-, опто- и наноэлектроники. Базовые	
			процессы. Пиро- и гидрометаллургия. Принципы выделения	
			химических соединений. Принципы восстановления металлов из их	
			соединений. Технология получения тугоплавких металлов технической	
2			и высокой чистоты. Вольфрам. Молибден. Тантал и ниобий. Титан и	
			цирконий.	
	6	2	Технология получения металлов III группы технической и высокой	
			чистоты. Алюминий. Галлий. Индий.	
			Технология металлов высокой проводимости. Медь	
	7	2	Технология диэлектрических материалов. Стекла. Классификация,	
			составы и получение. Стеклокерамические материалы. Процессы	
			катализации зародышеобразования.	
			Технология диэлектрических материалов. Керамические материалы.	
			Технология активных диэлектрических материалов. Пьезо-, сегнето- и	
3			пироэлектрики.	
	8	2	Технология органических диэлектрических материалов.	
	٥	2	Технология углеродных материалов. Аллотропные формы углерода. Технология объемных и пленочных алмазоподобных материалов.	
			•	
			Технология наноструктурированных углеродных материалов. Фуллерены, нанотрубки. Графены.	
			Технология некристаллических материалов.	

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия	
1	1	2	Интерактивное занятие. Разработка технологических приемов удаления	
			пустой породы из бедных руд.	
	2	2	Расчет сублимационной очистки фосфора.	
	3	2	Расчет направленной кристаллизации галлия.	
	4	2	Интерактивное занятие. Разработка технологических приемов	
			извлечения галлия и индия из отходов полупроводникового	
			производства.	
2	5	2	Интерактивное занятие. Определение основных составов стекол для	
			различных потребителей.	
	6	2	Интерактивное занятие. Выбор оптимальных способов очистки воды	
3	7	2	Интерактивное занятие. Обсуждение технологических приемов и	
			физико-химических процессов, происходящих при изготовлении	
			керамических изделий.	
	8	2	Интерактивное занятие. Обсуждение возможных областей	
			использования фуллеренов и нанотрубок.	

4.3. Лабораторные работы

Не предусмотрены

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС	
1-3			
	16	Проработка конспекта лекций, учебников и обязательной литературы	
	2	Подготовка к тестированию (рубежный контроль).	
	12	Подготовка к контрольным работам по индивидуальному заданию	
	10	Выполнение индивидуального задания по заданной теме	

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно – методическое обеспечение для самостоятельной работы студентов, представленное в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/): Сценарий обучения по дисциплине

Модули 1-3

✓ Учебно-методические материалы для студентов по организации самостоятельной работы по дисциплине: «Технология материалов микро-, опто- и наноэлектроники»

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Технология материалов микро-, опто- и наноэлектроники: Учеб. пособие. Ч. 2 / В.М. Рощин, М.В. Силибин. М.: БИНОМ. Лаборатория знаний, 2010. 184 с. ISBN 978-5-94774-913-7; 978-5-94774-910-6
- 2. Рощин В.М. Технология проводящих и диэлектрических материалов [Текст] : Учеб. пособие / В.М. Рощин. М. : МИЭТ, 2007. 192 с. ISBN 978-5-7256-0462-7
- 3. Рощин В.М. Сборник лабораторных работ "Технология проводящих и диэлектрических материалов" [Текст] / В.М. Рощин, В.Б. Яковлев, М.В. Силибин; Под ред. В.М. Рощина. М.: МИЭТ, 2006. 92 с.

Периодические издания

1. Organic Electronics: Materials, Physics, Chemistry and Applications. – URL: http://www.journals.elsevier.com/organic-electronics/ (дата обращения: 10.11.2024). – Режим доступа: свободный. – ISSN 1566-1194

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. **eLIBRARY.RU**: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru(дата обращения: 11.12.2024). Режим доступа: для зарегистрир. пользователей.
- 2. Российская государственная библиотека: сайт. Москва, 1999-2020. URL: http://www.rsl.ru (дата обращения: 11.12.2024).
- 3. GoogleScholar: сайт. США, 2004: URL: https://scholar.google.ru. (дата обращения: 11.12.2024). Режим доступа: свободный.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (реализовывается с применением электронного обучения и дистанционных образовательных технологий).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

При проведении занятий и для самостоятельной работы используются **внешние** электронные ресурсы в формах:

- учебные материалы по курсу органической химии (Химический факультет МГУ) http://www.chem.msu.su/rus/teaching/org.html

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное оборудование	Microsoft Windows Microsoft Office
Лаборатория функциональной электроники № 4349	Малогабаритная вакуумная установка МВУ ТМ-ТИС осаждения тонких плёнок методом термического испарения Малогабаритная вакуумная установка МВУ ТМ "Плазма-РИТ" реактивно-ионного травления Малогабаритная вакуумная установка МВУ ТМ-Магна нанесения тонких плёнок методом магнетронного распыления материала Установка вакуумного осаждения нитевидных нанокристаллов и углеродных трубок First Nano Inc. USA	Не требуется
Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	Операционная система Microsoft Windo ws от 7 версии и выше, Microsoft Office Pr ofessional Plus или Open Office, браузер (Firefox, Google Crome); Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-1.ТММОНЭ** «Способен осуществлять выбор методов модификации состава материалов, используемых в наноэлектронике».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Все содержание дисциплины разбито на 3 модуля. Каждый модуль является логически завершенной частью курса. Успешность освоения каждого модуля оценивается по результатам выполнения обязательных контрольных мероприятий.

В процессе освоения дисциплины студенты самостоятельно готовят и выполняют предусмотренные контрольные мероприятия на проверку усвоения необходимых знаний и умений в форме контрольных работ, на проверку умений и опыта деятельности — в форме защиты индивидуального задания, результат выполнения которых отражается в накопительной балльной системе.

Индивидуальное задание подразумевают самостоятельную работу обучающихся по разработке технологии получения наноматериалов и приборных структур на их основе.

Наиболее сложные и проблемные вопросы курса могут быть разъяснены обучающимся во время очных консультаций.

По завершении обучения проводится публичное представление результатов выполнения индивидуального задания.

Зачет проходит в форме выполнения заданий для промежуточной аттестации.

11.2. Система контроля и оценивания

По завершению изучения дисциплины предусмотрен зачёт с оценкой, при этом оценка итогов учебной деятельности студента основана на накопительно — балльной системе. Для сдачи зачёта с оценкой по дисциплине разработан ФОС, включающий тестовые задания и расчётное задание по проверке сформированности подкомпетенции с методическими указаниями по их выполнению и критериями оценки.

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Доцент Института ПМТ, к.т.н. .___

Е.А.Лебедев /

Рабочая программа дисциплины «Технология материалов микро-, опто- и наноэлектроники» по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», направленности (профилю) «Технологии материалов микроэлектроники» разработана в Институте перспективных материалов и технологий и утверждена на заседании Ученого совета Института ПМТ 19 декабря 2024 года, протокол № 16

j ibepagena na saeegamm 5 ienoro cobeta imermijia invir 15 genaepa 2021 rega, iipore
№ 16
Директор Института ПМТ /С.В.Дубков/
Лист согласования
Рабочая программа согласована с Передовой инженерной школой
Таоочая программа согласована с передовой инженерной школой
Директор ПИШ/А.Л.Переверзев /
Рабочая программа согласована с Центром подготовки к аккредитации
независимой оценки качества
1/
Начальник АНОК / И.М.Никулина /
пачальник Апок/ илилликулина/
Рабочая программа согласована с библиотекой МИЭТ
Директор библиотеки/ Т.П.Филиппова /

И