Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александр Министерство науки и высшего образования Российской Федерации

Должность: Ректор Федеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 16.07.2024 12:44:09

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c8f8bea882b8db02

ТВЕРЖДАЮ Проректор по учебной работе А.Г. Балашов 202 4 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Численные методы»

Направление подготовки – 02.03.01 «Математика и компьютерные науки» Направленность (профиль) – «Компьютерная математика и анализ данных»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенции, формируемые в дисциплине	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций
ОПК-1. Способен консультировать и	ОПК-1.ЧМ	Знает теоретические
использовать фундаментальные знания	Способен	основы численных
в области математического анализа,	использовать	методов.
комплексного и функционального	численные методы	Умеет использовать
анализа алгебры, аналитической	для исследования	классические
геометрии, дифференциальной	математических	вычислительные
геометрии и топологии,	моделей	алгоритмы.
дифференциальных уравнений,	практических задач	Имеет опыт
дискретной математики и		исследования
математической логики, теории		математических
вероятностей, математической		моделей практических
статистики и случайных процессов,		задач с использованием
численных методов, теоретической		численных методов.
механики в профессиональной		
деятельности		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Для изучения дисциплины студент должен владеть знаниями и умениями в области линейной алгебры, теории дифференциального и интегрального исчислений, теории дифференциальных уравнений.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		É	91.3	Конта	ктная ра(бота		ACT COMMANDA
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	4	5	180	32	16	16	80	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа		K			
№ и наименование Модуля	Лекции (часы)			Самостоятельная работа	Формы текущего контроля	
1.					Защита больших домашних заданий	
Математические	32 16 16		80	№ 1, № 2		
основы				Защита лабораторных работ №1 - №7		
численных				Коллоквиум		
методов				Защита расчётно-графической работы		

4.1. Лекционные занятия

— № модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание				
1	1	2	Приближенные вычисления. Структуры погрешности в численном				
			анализе. Представление числа с плавающей точкой. Округление при				
			выполнении арифметических операций в компьютере.				
	2	2	Численное решение нелинейных уравнений. Методы дихотомии,				
			Ньютона, простых итераций. Локализация корней. Кратные корни.				
			Обобщённый метод Ньютона.				
	3	2	Приближение функций интерполяционными полиномами.				
			Полиномы Лагранжа, Ньютона. Погрешность интерполяции.				
			Полиномы Эрмита.				
	4	2	Многочлены Чебышева. Среднеквадратичное приближение. Метод				
			наименьших квадратов. Различные формы многочленов Чебышёва и				
			их свойства. Среднеквадратичное приближение. Метод наименьших				
			квадратов.				
_	5	2	Кусочная интерполяция. Численное дифференцирование. Виды				
			кусочной интерполяции. Интерполяция сплайнами. Разделённые				
		0	разности. Порядок погрешности.				
	6	2	Численное интегрирование. Формулы прямоугольников, трапеций,				
	7	0	Симпсона. Определение точности результата с помощью метода Рунге.				
	7	2	Численное интегрирование. Формулы Ньютона-Котеса.				
	8	2	Метод конечных разностей. Решение задачи Коши ОДУ. Метод				
1			Эйлера. Построение разностных схем. Порядок точности решения.				

		Порядок аппроксимации решения.			
9	2	Матричные вычисления. Норма вектора. Норма матрицы. Число			
		обусловленности.			
10	2	Численное решение СЛАУ. Прямые методы. Метод Крамера. Метод			
		Гаусса без выбора и с выбором главного элемента.			
11	2	Решение СЛАУ трехдиагонального вида методом прогонки. Метод			
		прогонки. Устойчивость метода прогонки. Условия применимости.			
12	12 Численное решение СЛАУ. Итерационные методы. Метод Метод Зейделя. Каноническая форма записи итерационного мето				
13	2	Решение краевой задачи. Построение разностной схемы с заданным			
		порядком аппроксимации.			
14	14 2 Разностные схемы для уравнений с частными производными.				
	разностных схем. Шаблоны.				
15	Численное решения уравнения переноса. Типы разностных схем.				
	Устойчивость.				
16	2	Численное решение уравнений теплопроводности. Типы разностных			
		схем. Устойчивость.			

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия				
1	1	2	Приближенные вычисления. Структуры погрешности в численном				
			анализе.				
	2	2	Методы дихотомии, Ньютона, простых итераций.				
	3	2	Интерполяция функций. Полиномы Лагранжа, Ньютона.				
	4	2	Метод среднеквадратичного приближения, сплайны.				
	5	2	Дифференцирование функции, заданной таблично.				
	6	2	Численное интегрирование функций.				
	7	2	Численные методы в линейной алгебре.				
	8	2	Численное решение дифференциальных уравнений.				

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы			
1	1	2	Распространение ошибок в вычислительных процедурах.			
	2	4	Методы дихотомии, Ньютона, простых итераций.			
	3	2	Интерполяция функций. Полиномы Лагранжа, Ньютона.			
	4	2	Дифференцирование функции, заданной таблично.			
	5	2	Интегрирование функций.			
	6	2	Решение систем линейных уравнений.			
	7-8	4	Метод Эйлера. Схемы Рунге-Кутта решения ОДУ.			

4.4. Самостоятельная работа студентов

№ модуля лиспиплины	Объем занятий (часы)	Вид СРС			
1	4	Подготовка к лабораторной работе №1			
	4	Подготовка к лабораторной работе №2			
	4 Подготовка к лабораторной работе №3				
	4	Подготовка к лабораторной работе №4			
	10	Выполнение индивидуального домашнего задания №1 по темам лекций 1-4 и практических занятий 1-4			
	4	Подготовка к лабораторной работе №5			
	4	Подготовка к лабораторной работе №6			
	8	Подготовка к лабораторной работе №7			
	10	Выполнение индивидуального домашнего задания №2 по темам лекций 5-8 и практических занятий 5-8			
	20	Подготовка к коллоквиуму			
	8	Выполнение РГР			
	36	Подготовка к экзамену			

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: http://orioks.miet.ru/:

Общее

✓ Методические указания студентам по изучению дисциплины

Модуль 1 «Математические основы численных методов»

- ✓ Планы практических занятий
- ✓ Тексты лекций (для всех видов самостоятельной работы)
- Индивидуальные варианты Большого домашнего задания № 1,2

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Яковлев, В.Б. Вычислительная математика: Учеб. Пособие / В.Б. Яковлев. 2-е изд., испр. М.: МИЭТ, 2017. 132 с. ISBN 978-5-7256-0859-5
- 2. Численные методы: Учеб. пособие / Е. А. Волков. 5-е изд., стер. СПб.; М.; Краснодар: Лань, 2008. 256 с. (Учебники для вузов. Специальная литература). URL: https://e.lanbook.com/book/54 (дата обращения: 25.03.2023)
- 3. Лабораторный практикум по курсу "Вычислительная математика" / В. А. Гончаров, В. Н. Земсков, В. Б. Яковлев; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ). М.: МИЭТ, 2008. 104 с.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 25.03.2023). Режим доступа: для авторизированных пользователей МИЭТ
- 2. eLIBRARY.RU : Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 05.11.2020). Режим доступа: для зарегистрированных пользователей
- Math-Net.Ru: 3. общероссийский математический портал: сайт. Москва. Математический B. A. PAH, 2020. институт им. Стеклова URL: http://www.mathnet.ru/ (дата обращения: 25.03.2023). — Режим доступа: для зарегистрированных пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Учебный процесс реализуется в формате смешанного обучения.

Применяется расширенная виртуальная модель обучения, предполагающая обязательное присутствие студентов на очных учебных занятиях с преподавателем и последующую самостоятельную работу студента по теме занятия. Работа еженедельно происходит по следующей схеме:

- (1) лекция (контактная работа по расписанию занятий) СРС (проработка лекционного материала с использованием текста, презентации, видео записи;
- (2) семинар (контактная работа по расписанию занятий, включающая совместное решение типовых заданий и обсуждение нетиповых задач) СРС (выполнение текущей домашней работы по теме семинара (единого для всех студентов набора типовых и нетиповых заданий) с последующим выборочным рецензированием силами преподавателя);
- (3) лабораторная работа семинар (контактная работа по расписанию занятий, включающая совместное решение типовых заданий и обсуждение нетиповых задач) СРС (выполнение текущей домашней работы по теме лабораторной работы (единого для всех студентов набора типовых и нетиповых заданий) с последующим выборочным рецензированием силами преподавателя).

В рамках изучения дисциплины студентам выполняют расчетно-графическую работу. Примерная тематика расчетно-графических работ:

- 1. Нахождение всех корней (в том числе комплексных) произвольного многочлена степени ≤20 методом парабол
- 2. Интерполяция сплайнами (вычисления методом прогонки)
- 3. Интерполяция многочленами Эрмита
- 4. Интегрирование методом Симпсона с автоматическим выбором шага на участках с различной скоростью роста функции.
- 5. Решение краевой задачи для дифференциального уравнение 2-го порядка с граничным условием 1-го рода методом прогонки
- 6. Решение краевой задачи для дифференциального уравнение 2-го порядка с граничным условием 2-го рода методом прогонки
- 7. Решение краевой задачи для дифференциального уравнение 2-го порядка с граничным условием 3-го рода методом прогонки
- 8. Решение системы линейных уравнений методом Якоби
- 9. Решение системы линейных уравнений методом Зейделя
- 10. Решение системы линейных уравнений методом вращений
- 11. Решение системы линейных уравнений методом LU-разложений
- 12. Вычисление обратной матрицы методом LU-разложений
- 13. Численное решение дифференциальных уравнений методом Рунге-Кутты 4-го порядка
- 14. Интегрирование методом Гаусса
- 15. Решение системы нелинейных уравнений методом Ньютона
- 16. Численное решение дифференциальных уравнений методом Адамса
- 17. Поиск собственных значений матрицы степенным методом
- 18. Решение системы линейных уравнений методом релаксации
- 19. Решение системы линейных уравнений методом наискорейшего градиентного

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел «Домашние задания» ОРИОКС, форумы в электронном курсе MOODLE, электронная почта.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел «Домашние задания» ОРИОКС, форумы в электронном курсе MOODLE, электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование		
специальных	Оснащенность учебных	
помещений и	аудиторий и помещений для	Перечень программного
помещений для	самостоятельной работы	обеспечения
самостоятельной		
работы		
Учебная аудитория	Учебная доска	Операционная
	Мультимедийное оборудование	система Microsoft Windows от 7
	(компьютер с ПО и	версии и
	возможностью подключения к	выше, Microsoft Office Professio
	сети Интернет и обеспечением	nal Plus или Open Office,
	доступа в электронно-	браузер
	образовательную среду МИЭТ;	(Firefox, Google Chrome);
	телевизоры;	Acrobat reader DC
	акустическое оборудование	MATLAB/Octave/Python
	(микрофон, звуковые колонки))	
Учебная аудитория	Учебная доска	ПО не требуется
Компьютерный класс	Системный блок Intel Core i5,	Операционная
	монитор ТГТ 21,5" АОС	система Microsoft Windows от 7
	i2269Vw	версии и выше,
		Microsoft Office Professional Pl
		us или Open Office, браузер
		(Firefox, Google Chrome);
		Acrobat reader DC
		MATLAB/Octave/Python
Помещение для	Компьютерная техника с	Операционная
самостоятельной	возможностью подключения к	система Microsoft Windows от 7
работы обучающихся	сети «Интернет» и обеспечением	версии и выше,
	доступа в электронную	Microsoft Office Professional Plu
	информационно-	s или Open Office, браузер
	образовательную среду МИЭТ	(Firefox, Google Chrome);
		Acrobat reader DC
		MATLAB/Octave/Python

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ОПК-1.ЧМ «Способен использовать численные методы и применять аналитические и научные пакеты прикладных программ для исследования математических моделей».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Лекции, практические занятия и лабораторные работы проводятся контактно в соответствии с расписанием (2 часа лекций, 1 час практических занятий и 1 час лабораторных работ в неделю). Посещение лекций, практических занятий и лабораторных работ обязательно. Дополнительной формой контактной работы являются консультации (их посещать необязательно). Перечень доступных студентам учебно-методических материалов приведен в п. 5, 6, 7.

Задания лабораторных работ содержат практико-ориентированные задания на опыт деятельности.

Подробное описание организации процесса обучения, системы контроля и оценивания изложено в «Методических рекомендациях студентам по изучению дисциплины».

11.2. Система контроля и оценивания

Система контроля включает мероприятия текущего контроля и промежуточной аттестации. Текущий контроль состоит из выполнения и защиты семи лабораторных работ, двух индивидуальных больших домашних заданий, коллоквиума.

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система. Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре и сдача экзамена. Максимальный суммарный балл — 100.

Важное значение придается соблюдению сроков сдачи контрольных мероприятий. Задержка в сдаче приводит к уменьшению числа баллов, начисляемых за выполнение, вплоть до полной их потери (соответствующие правила прописаны в «Методических рекомендациях студентам по изучению дисциплины»).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

	//	
РАЗРАБОТЧИК:	///	,

Доцент каф. ВМ-1, к.ф.-м.н. _________/Гурьянов М.А./

Рабочая программа дисциплины «Численные методы» по направлению подготовки 02.03.01 «Математика компьютерные науки», направленность (профиль) И «Компьютерная математика и анализ данных», разработана на кафедре ВМ-1 и утверждена на заседании кафедры 25.03 202 4 года, протокол № 8

Заведующий кафедрой ВМ-Т-Айм

_/А.А. Прокофьев/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК ____/Никулина И.М./

Рабочая программа согласована с библиотекой МИЭТ