Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александричнистерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора дъное государственное автономное образовательное учреждение высшего образования Дата подписания: 23.06.2025 11:43:15

«Национальный исследовательский университет Уникальный программный ключ:

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учеблой работе

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Проектирование топологии КМОП аналоговых интегральных схем»

Направление подготовки - 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) - «Проектирование и технология устройств интегральной наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

ПК-3. Способен проектировать устройства, приборы и системы электронной техники с учетом заданных требований

Подкомпетенция ПК-3.ПТАИС Способен проектировать топологию КМОП аналоговых интегральных схем

сформулирована на основе профессионального стандарта 40.035 «Инженерконструктор аналоговых сложнофункциональных блоков»

Обобщенная трудовая функция D «Сопровождение работ по проекту, контроль требований технического задания на аналоговый СФ-блок и отдельные аналоговые блоки» Трудовая функция D/01.7 «Организация выполнения работ по проектированию аналогового СФ-блока»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций/подкомпетенций
ПК-3.ПТАИС	Проектно-конструкторская:	Знать: правила проектирования
Способен	проектирование устройств,	топологии активных и пассивных
проектировать	приборов и систем	элементов КМОП аналоговых
топологию КМОП	электронной техники с	интегральных схем.
аналоговых	учетом заданных	Уметь: проектировать топологию
интегральных схем	требований	аналоговой интегральной схемы.
		Иметь опыт деятельности:
		использования САПР Cadence для
		проектирования топологии КМОП
		аналоговых интегральных схем

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы, является элективной.

Входные требования к дисциплине: знание основ технологии интегральных схем, аналоговой схемотехники, технического английского языка.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		(1)		K	онтактная ра	бота	æ	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	2	5	180	_	16	32	96	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Кон	тактная	н работа	~	
№ и наименование модуля	Лекции	Практические занятия	Практическая подготовка при проведении лабораторных работ (часы)	Самостоятельная работа	Формы текущего контроля
1. Методы проектирования		16	8	14	Опросы на практических занятиях
топологии аналоговых блоков	_	10	0	18	Выполнение и защита лабораторных работ
2. Системы				14	Опросы на практических занятиях
полуавтоматического и ручного синтеза	_	16	8	18	Выполнение и защита лабораторных работ
топологии АИС				32	Сдача практического задания

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

			4.2. Практические занятия
№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
	1	4	Рассмотрение эффекта накопления заряда в кристалле
	2	4	Рассмотрение эффектов электромиграции и саморазогрева в кристалле
1	3	4	Правила проектирования контактных площадок и их расположения.
1			Правила защиты схем от электростатического разряда. Экранирование
			от помех
	4	4	Эффект защелкивания и проектирование охранных колец
	5	4	Правила проектирования согласованных элементов. Согласование по
2			току и по напряжению
\	6	4	Правила проектирования дифференциальных и выходных каскадов,
			токовых зеркал, матриц резисторов и конденсаторов

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
	7	4	Финализация топологии проекта. Добавление технологических
			топологических структур, формирования фрейма. Генерация
			скрайберных дорожек вокруг кристаллов
	8	4	Особенности выполнения проверки топологии на соответствие
			конструкторско-технологическим ограничениям

4.3. Практическая подготовка при проведении лабораторных работ (часы)

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Краткое содержание
1	1	4	Особенности проектирование элементной базы в системе
_	1	•	автоматизированного проектирования Cadence Virtuoso.
			Разработка топологии ОУ.
1-2	2-3	8	Топологическое проектирование входного дифференциального каскада,
			выходного каскада, токовых зеркал и пассивных элементов.
2	4	4	Разработка топологии матрицы согласованных резисторов и
2	4	4	конденсаторов.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	14	Подготовка кратких сообщений на практических занятиях
	18	Подготовка к выполнению и защите лабораторных работ
2	14	Подготовка кратких сообщений на практических занятиях
	18	Подготовка к выполнению и защите лабораторных работ
	32	Выполнение практического задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Проектирование топологии КМОП аналоговых интегральных схем».

Модуль 1 «Методы проектирования топологии аналоговых блоков»

- ✓ Материалы для подготовки к практическим занятиям: Учебное пособие по дисциплине «Основы топологического проектирования приборов и систем наноэлектроники»/ А.В. Швец, В. В. Лосев ; М-во образования и науки РФ, МГИЭТ(ТУ). М., 2011. 60 л.
- ✓ Материалы для самостоятельной подготовки: Учебно-методическое пособие для самостоятельной работы по дисциплине «Основы топологического проектирования приборов и систем наноэлектроники»/ В. В. Лосев ; М-во образования и науки $P\Phi$, МГИЭТ(ТУ). М., 2011. 52 л.
- ✓ Материалы для подготовки к лабораторным работам: задание к лабораторным занятиям по модулю 1 (ОРИОКС, http://orioks.miet.ru/)
- ✓ Учебно-методическая разработка для лабораторного практикума по курсу "Микросхемотехника АИС" В. В. Лосев ; М-во образования и науки РФ, МГИЭТ(ТУ). М., 2007. 46 л.

Модуль 2 «Системы полуавтоматического и ручного синтеза топологии АИС»

- ✓ Материалы для подготовки к практическим занятиям: Учебное пособие по дисциплине «Основы топологического проектирования приборов и систем наноэлектроники»/ А.В. Швец, В. В. Лосев ; М-во образования и науки РФ, МГИЭТ(ТУ). М., 2011. 60 л.
- ✓ Материалы для самостоятельной подготовки: Учебно-методическое пособие для самостоятельной работы по дисциплине «Основы топологического проектирования приборов и систем наноэлектроники»/ В. В. Лосев ; М-во образования и науки РФ, МГИЭТ(ТУ). М., 2011. 52 л.
- ✓ Материалы для подготовки к лабораторным работам: задание к лабораторным занятиям по модулю 2 (ОРИОКС, http://orioks.miet.ru/)
- ✓ Учебно-методическая разработка для лабораторного практикума по курсу "Микросхемотехника АИС" В. В. Лосев ; М-во образования и науки РФ, МГИЭТ(ТУ). М., 2007. 46 л.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Эннс В.И. Проектирование аналоговых КМОП микросхем : Краткий справочник разработчика / В.И. Эннс, Ю.М. Кобзев. М. : Горячая линия-Телеком, 2005. 454 с.
- 2. Красников Г.Я. Конструктивно-технологические особенности субмикронных МОП-транзисторов / Г.Я. Красников. 2-е изд., испр. М.: Техносфера, 2011. 800 с.
- 3. Нано-КМОП-схемы и проектирование на физическом уровне / Б.П. Вонг [и др.]; Пер. с англ. К.В. Юдинцева, под ред. Н.А. Шелепина. М.: Техносфера, 2014. 432 с.

Периодические издания

- 1. RUSSIAN MICROELECTRONICS. : Springer, [2000] . URL: http://link.springer.com/journal/11180 (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 2. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 .
- 3. IEEE TRANSACTIONS ON ELECTRON DEVICES. USA : IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=16 (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ

7. ПЕРЕЧЕНЬ БАЗ ДАННЫХ, ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2019). Режим доступа: для зарегистрир. пользователей
- 2. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. –URL: www.scopus.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используются смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

В ходе реализации обучения используется также «расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях или онлайн-занятиях с последующим самостоятельным выполнением индивидуального задания. Работа поводится по следующей схеме: аудиторная работа (практические занятия с разбором проблем, обсуждением и опросами); СРС (онлайновая работа с использованием онлайн-ресурсов, в т.ч. для организации обратной связи с обсуждением, консультированием, с последующей доработкой и подведением итогов).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: разделя ОРИОКС «Новости», «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное	Операционная
	оборудование	система Microsoft
		Windows от 7 версии и
		выше, Microsoft Office
		Professional Plus или Open
		Office
Аудитория для лабораторных	Компьютерный класс	OC Linux, САПР Cadence
работ и самостоятельной		
работы		
Помещение для	Компьютерная техника с	Операционная
самостоятельной работы	возможностью	система Microsoft
	подключения к сети	Windows от 7 версии и
	«Интернет» и	выше, Microsoft Office
	обеспечением доступа в	Professional Plus или Open
	электронную	Office, браузер (Firefox,
	информационно-	Google Crome);
	образовательную среду	Acrobat reader DC
	ТЄИМ	

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по компетенции/подкомпетенции ПК-3.ПТАИС Способен проектировать топологию КМОП аналоговых интегральных схем.

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины в электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В дисциплине предусмотрены следующие виды занятий: практические занятия, лабораторные работы и самостоятельная работа. Форма промежуточной аттестации – экзамен.

Посещение практических занятий, выполнение и защита лабораторных работ являются обязательными. Для практических занятий студенты готовят сообщения на заданные темы. Несколько студентов по очереди докладывают подготовленное задание

(при необходимости с использованием компьютера и проектора). Каждый доклад обсуждается как с преподавателем, так и между студентами группы в форме дискуссии.

Лабораторные работы выполняются в индивидуальном порядке. Вариант задания уточняется преподавателем (с привязкой к конкретной проблемной ситуации). Подбор проблемных заданий должен вызывать интерес у студента, базироваться на уже имеющихся знаниях, быть посильным и не тривиальным, давать предметное профессиональное знание в соответствии с моделью специалиста, учебными планами и программами. Оформляется отчет.

Во время самостоятельной работы студенты готовят материалы для сообщений на заданные темы, готовятся к выполнению и защите лабораторных работ, выполняют практическое задание на разработку топология КМОП аналогового блока.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

Баллами оцениваются: выполнение и защита лабораторных работ, выполнение практического задания, работа на практических занятиях (до 50 баллов) и сдача экзамена (до 50 баллов). По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий приведены ниже в таблице (см. также журнал успеваемости на ОРИОКС, http://orioks.miet.ru/).

Разработчик:Профессор, д.т.н. / В.В. Лосев /

интегральных схем» по направлению подготовки 11.04.04 «Электроника и
наноэлектроника» по направленности (профилю) «Проектирование и технология
устройств интегральной наноэлектроники») разработана на кафедре ИЭМС и утверждена
на заседании кафедры <u>26.11</u> 202 <u>0</u> года, протокол № <u>5</u>
6
Заведующий кафедрой/ Ю.А. Чаплыгин /
THET COET A CORATING
лист согласования
Рабочая программа согласована с Центром подготовки к аккредитации и независимой
оценки качества
оценки качества
оценки качества
оценки качества
оценки качества Начальник АНОК/ И.М. Никулина /