Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович Аннотация рабочей программы дисциплины

Должность: Ректор МИЭТ

«Методы прикладной математики»

Дата подписания: 17.07.2024 10:24:05 Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a**Hanpавлениесподготовки6c01b04s04sdПр**икладная математика»

Направленность (профиль) - «Математические методы моделирования и анализа данных»

Уровень образования - «магистратура»

Форма обучения - «очная»

1. Цели и задачи дисциплины

Целью изучения дисциплины является формирование способностей использовать методы асимптотического анализа и теории приближений для исследования математических моделей.

Задачами курса являются: приобретение знаний об основных методах асимптотического анализа и теории приближений, приобретение умений оценивать асимптотическое поведение характеристик процессов и явлений, опираясь на асимптотическую теорию, получение опыта исследования математических моделей методами асимптотического анализа.

2. Место дисциплины в структуре ОП

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы. Входные требования к дисциплине: слушатели должны быть знакомы стандартными курсами математического анализа, линейной алгебры, дифференциальных уравнений и уравнений математической физики. Понятия и методы дисциплины могут быть использованы при подготовке ВКР.

3. Краткое содержание дисциплины

Основы асимптотического анализа. Понятие асимптотического ряда. Действия с асимптотическими рядами. Асимптотические формулы для преобразований Лапласа. Регулярные и сингулярные разложения. Асимптотические разложения решений алгебраических уравнений. Метод диаграмм Ньютона.

Асимптотические оценки интегралов и сумм. Практическое применение методов Лапласа, стационарной фазы и перевала. Асимптотические оценки конечных и бесконечных сумм. Асимптотические формулы в комбинаторике. Производящие функции. Асимптотические оценки рекуррентных последовательностей.

Асимптотические оценки решений дифференциальных уравнений. Линейные уравнения второго порядка. Преобразования Лиувилля. Асимптотические оценки поведения решений дифференциальных уравнений на бесконечности.

Теория приближений. Задачи на наилучшее приближение непрерывных функций многочленами. Применение многочленов Чебышева.

Разработчик:

Профессор каф. ВМ-1, д.ф.-м.н., профессор Алфимов Г.Л.