Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александро Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Образовательное учреждение высшего образования Дата подписания: 01.07.2025 11:02:40

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Методы исследования материалов и структур»

Направление подготовки - 22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) - «Технологии материалов микроэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция ПК-2 «Способен организовывать и аналитически сопровождать выполнения научно-исследовательских работ по закрепленной тематике» **сформулирована на основе профессионального стандарта** 40.008 «Специалист по организации и управлению научно-исследовательскими и опытно-конструкторскими работами»

Обобщенная трудовая функция 40.008 A[6] Организация выполнения научноисследовательских работ по закрепленной тематике

Трудовая функция 40.008 A/01.6 Разработка и организация выполнения мероприятий по тематическому плану

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций	
ПК-2.МИМС Способен осуществлять выбор и проводить исследования свойств и состава материалов и структур	Научно-исследовательский тип задач профессиональной деятельности: - Организация выполнения научно-исследовательских работ по закрепленной тематике, - Проведение измерений параметров наноматериалов и наноструктур в соответствии с требованиями технической и нормативной документации.	Знание основ рентгеноструктурного анализа, электронографии, световой, рентгеновской и электронной микроскопии; методов исследования элементного состава Умение выбрать необходимый метод исследования свойств и состава материалов и структур Опыт обработки и интерпретации результатов измерений параметров наноматериалов и наноструктур	

Компетенция ПК-3 «Способен прогнозировать влияние микро- и нано- масштаба на механические, физические, химические и другие свойства веществ и материалов» **сформулирована на основе профессионального стандарта** 40.104 Специалист по измерению параметров и модификации свойств наноматериалов и наноструктур

Обобщенная трудовая функция С [6] Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур

Трудовая функция С/01.6 Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-3.МИМС	Научно-	Знание основ
Способен проводить	исследовательский тип	рентгеноструктурного анализа,
выбор методов	задач профессиональной	электронографии, световой,
исследования	деятельности:	рентгеновской и электронной
материалов	Совершенствование	микроскопии; методов
различной	процессов измерений	исследования элементного состава
размерности	параметров и	Умение
	модификации свойств	выбрать метод исследования
	наноматериалов и	материалов различной размерности
	наноструктур	Опыт деятельности в выборе
		методов исследования материалов,
		исходя из представлений о
		размернозависимых эффектах

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине.

Изучению дисциплины предшествует формирование компетенций в дисциплинах: «Математика», «Теория вероятностей и математическая статистика», «Физика» (Механика. Термодинамика. Электричество и магнетизм. Оптика. Атомная физика), «Химия», «Кристаллография», «Метрология, стандартизация и технические измерения», «Физико-химические основы технологии интегральных микро- и наноструктур». Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются в дисциплине «Физика и химия полупроводников», практикой и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контактная работа			вч	K	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая Трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельна: работа (часы)	Промежуточная аттестация	
4	7	5	180	32	32	16	64	Экз (36)	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

		актная	, ,	TMITATALE	
№ и наименование модуля	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля
1. Характеристика исследуемых объектов и излучений; физические эффекты, лежащие в основе методов исследования структуры	4	2	4	10	Защита лабораторных работ
2. Рентгенографический анализ	8	4	12	16	Контрольная работа Защита лабораторных работ Тестирование
3. Электронографический анализ	8	4	8	14	Защита лабораторных работ
4. Световая, рентгеновская и электронная микроскопия.	8	4	4	12	Защита лабораторных работ Контрольная работа
5. Методы анализа элементного состава твердого тела.	4	2	4	12	Защита лабораторных работ

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание		
	1	2	Предмет, задачи, структура курса. Классификация объектов		
1			исследования,; характеристика излучений, используемых при		
			исследовании структуры и состава твердых тел. Методы регистрации		
			информации об объектах.		
	2	2	Взаимодействие рентгеновских лучей с веществом. Уравнение Лауэ.		
			Закон Вульфа – Брэгга. Использование обратной для интерпретации		
			уравнений дифракции рентгеновских лучей на кристаллической		

			решетке. Интенсивность рассеяния рентгеновских лучей. Факторы,
			влияющие на интенсивность линий рентгенограммы.
	1	2	Рентгенофазовый анализ поликристаллических образцов. Метод Дебая-Шеррера. Индицирование дебаеграмм. Прецизионное определение параметра кристаллической решетки. Систематические и случайные ошибки.
	2	2	Методы рентгеноструктурного анализа монокристаллов: качания – вращения, Бонда, Косселя. Последовательность определения атомной структуры кристаллов.
2	3	2	Рентгенографический анализ текстур. Рентгенографические методы определения размеров зерен. Анализ интенсивности кривых качания для определения микронапряжений и размеров областей когерентного расселения. Рентгенографический анализ микро- и макронапряжений.
	4	2	Определение ориентации монокристаллов. Метод Лауэ. Съемка на просвет и на отражение. Использование методов рентгеноструктурного анализа в промышленности.
	1	2	Электронография. Сравнительный анализ электронографии и рентгенографии. Области применения и задачи электронографии.
3	2	2	Образование электронограмм. Вид электронограмм от монокристаллов, поликристаллов, текстурированного и аморфного материалов. Дополнительные эффекты на точечных электронограммах.
	3	2	Вывод основного уравнения электронографии. Индицирование электронограмм.
	4	2	Применение электронографии для исследования материалов и структур.
	1	2	Основы световой микроскопии. Формирование изображения в световом микроскопе. Осветительная система по Келлеру. Характеристики светового микроскопа. Специальные виды световой микроскопии.
4	2	2	Конструкции электронных микроскопов. Просвечивающая электронная микроскопия. Основные характеристики. Режимы работы. Формирование изображения. Подготовка образцов для просвечивающей электронной микроскопии.
	3	2	Растровая электронная микроскопия. Конструкция микроскопа. Режимы работы. Применение РЭМ для анализа причин отказов работы ИС.
	4	2	Рентгеновская микроскопия: абсорбционная, эмиссионная, дифракционная. Формирование контраста. Интерпретация изображений. Применение к исследованию атомно – кристаллической структуры.
5	1	2	Общая характеристика методов контроля химического состава объемных материалов, поверхности и границ раздела. Рентгеноспектральный анализ. Электронная спектроскопия для

		химического анализа.
2	2	Электронная Оже-спектроскопия. Спектроскопия упруго рассеянных
		ионов. Вторичная ионная масс-спектроскопия.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия		
1	1	2	Взаимодействие рентгеновского излучения с веществом. Расчет		
			толщины защитного экрана.		
2	1	2	Теоретический расчет интенсивности рефлексов рентгенограмм		
	2	2	Расчет и построение рентгенограммы от заданного текстурированного		
			образца.		
	1	2	Расчет плотности поверхностных состояний на межфазной границе		
3	2	2	Определение вектора Бюргерса, дислокаций. При заданных векторах		
			дифракции.		
4	1	2	Анализ условий визуального исследования кристаллов и определения		
			их оптико – физических характеристик в световых микроскопах.		
	1	2	Расчет концентрационного профиля элемента по данным		
5			интенсивности рентгеновского микроанализатора.		
	2	2	Расчет параметров процесса упругого и неупругого рассеяния ионов.		

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы		
1	1	4	Техника безопасности при работе с лазерами, источниками		
			некогерентного ИК – и УФ излучений, рентгеном.		
	1	4	Техника рентгеноструктурного анализа.		
2	2	4	Метод рентгенофазового анализа поликристаллических образцов.		
	3	4	Рентгенографический анализ текстуры волочения		
	1	4	Электронографические исследования моно- и поликристаллических		
			образцов		
3	2	4	Подготовка образцов для просвечивающей электронной микроскопии.		
			Исследование дефектов, возникающих на операциях диффузии,		
			эпитаксии, окисления		
4	1	4	Специальные виды световой микроскопии Освоение работы на		

			микроскопах: МИИ-4, МИМ-7, МИК-1, ЛМ-2, МП -2. Неофот-2.
5	1	4	Определение качественного и количественного состава поверхности
			твердого тела методом электронной Оже-спектроскопии.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС			
1	10	Изучение теоретического материала по тематике лекций 1-2 модуля 1.			
		Подготовка к лабораторной работе №1, Подготовка к практическому занятию № 1.			
2	16	Изучение теоретического материала по тематике лекций 1-4 модуля 2.			
		Подготовка к лабораторным работам №1,2.3 модуля 2. Подготовка к			
		практическому занятию № 1. 2. <i>Выполнение практико</i> -			
		<i>ориентированного задания 1</i> (подготовка к контрольной работе №1).			
3	14	Подготовка к прохождению рубежного контроля. Изучение			
		теоретического материала по тематике лекций 1-4 модуля 3. Подготовка			
		к лабораторным работам №1,2. модуля 3. Подготовка к практическому			
		занятию № 1.2 модуля 3.			
4	12	Изучение теоретического материала по тематике лекций 1-4 модуля 4.			
		Подготовка к лабораторным работам №1,2. модуля 4. Подготовка к			
		практическому занятию № 1 модуля 4.			
5	12	Изучение теоретического материала по тематике лекций 1-2 модуля 5.			
		Подготовка к лабораторным работам №1, модуля 5. Подготовка к			
		практическому занятию № 1.2модуля 5. <i>Выполнение практико</i> -			
		<i>ориентированного задания 2</i> (подготовка к контрольной работе №2).			

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС // URL: http://orioks.miet.ru/):

Модуль 1 «Характеристика исследуемых объектов и излучений; физические эффекты, лежащие в основе методов исследования структуры»

По учебнику авторов Л.И.Матына, В.А.Федоров, Ю.Н.Коркишко."Методы исследования состава и структуры материалов электронной техники ". Часть 2. М.:: МИЭТ, 1997 изучить материал на стр. 5-12

По Д.Брандон, У.Каплан «Мир материалов и технологий». «Микроструктура материалов. Методы исследования и контроля».М.:Техносфера, 2004 изучить (повторить) материал на стр.39 – 59. Стр.78 -82.

Модуль 2 «Рентгенографический анализ»

По учебнику авторов Д. Брандон и У. Каплан «Микроструктура материалов. Методы исследования и контроля».М.:Техносфера, 2004 изучить материал на стр. 67 – 94.

Модуль 3 «Электронографический анализ»

По учебнику авторов Д.Брандон, У.Каплан «Мир материалов и технологий». «Микроструктура материалов. Методы исследования и контроля».М.:Техносфера, 2004 изучить (повторить) материал на стр. 39 – 59. Стр. 99 – 108.

Для самопроверки и закрепления материала рекомендуется решить задачи: № 2.1; 2.4;. 2.7; 2.6.

Модуль 4 «Световая, рентгеновская и электронная микроскопия»

По учебнику авторов Д.Брандон, У.Каплан «Мир материалов и технологий». «Микроструктура материалов. Методы исследования и контроля».М.:Техносфера, 2004 изучить материал на стр.123 – 138. Стр.146 – 166; 171 – 174,; 183-194.

Рекомендуется повторить основные термины и понятия, а также познакомиться с представленным ниже материалом.

Модуль 5 «Методы анализа элементного состава твердого тела».

По учебнику авторов Д. Брандон и У. Каплан «Микроструктура материалов. Методы исследования и контроля». М.:Техносфера, 2004 изучить материал на стр. 253 - 269, 287 – 306.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Брандон Д. Микроструктура материалов. Методы исследования и контроля [Текст] : Учеб. пособие / Д. Брандон, У. Каплан; Пер. с англ. под ред. С.Л. Баженова, с доп. О.В. Егоровой. М. : Техносфера, 2006. 384 с.
- 2. Старостин, В.В. Материалы и методы нанотехнологий [Электронный ресурс] : учебное пособие / В.В. Старостин. 4-е изд. (эл.). Москва : Лаборатория знаний, 2015. 434 с. ISBN 978-5-9963-2601-3. URL: https://e.lanbook.com/book/66203 (дата обращения 20.11.2024)
- 3. Пул Ч. Нанотехнологии [Текст] : Учеб. пособие / Ч. Пул, Ф. Оуэнс; Пер. с англ. под ред. Ю.И. Головина. 4-е изд., испр. и доп. М. : Техносфера, 2009. 336 с.
- 4. Методы исследования состава и структуры материалов электронной техники [Текст]: Учеб. пособие. Ч. 1 : Методы исследования состава материалов электронной техники / Ю. Н. Коркишко [и др.]; Под ред. Ю.Н. Коркишко. М.: МИЭТ, 1997. 256 с.
- 5. Методы исследования состава и структуры материалов электронной техники [Текст]: Учеб. пособие. Ч. 2 : Методы исследования структуры материалов электронной техники / Л. И. Матына [и др.]; Под ред. Ю.Н. Коркишко. М.: МИЭТ, 1997. 120 с.
- 6. Матына Л.И. Основы световой, электронной и рентгеновской микроскопии [Текст]: Учеб. пособие по курсу "Методы исследования состава, структуры и электрофизических свойств материалов электронной техники" / Л. И. Матына. М.: МИЭТ, 1998. 104 с.

Периодические издания

- 1. Известия вузов. Материалы электронной техники: Научный рецензируемый журнал / ФГБОУ ВПО "Национальный исследовательский технологический университет "МИСиС". М.: МИСиС, 1998 2020.
- 2. Российские нанотехнологии = NANOTECHNOLOGIES IN RUSSIA / Федеральное агентство по науке и инновациям РФ, Парк-медиа. М. : Российские нанотехнологии,

2006 -. - Переводная версия NANOTECHNOLOGIES IN RUSSIA https://link.springer.com/journal/12201 (дата обращения 20.11.2024)

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. **eLIBRARY.RU:** научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 09.12.2024). Режим доступа: для зарегистрир. пользователей.
- 2. **SCOPUS:** Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.11.2024). Режим доступа: для зарегистрир. пользователей.
- 3. **Информационно-поисковая система Федерального института промышленной собственности:** сайт. Москва, 2009-2019. URL: https://www1.fips.ru/iiss/ (дата обращения: 21.11.2024). Режим доступа: для зарегистрир. пользователей.
- 4. **База** данных «**Термодинамические константы веществ»** (химического факультета МГУ): сайт. Москва, 1999-2020. URL: http://www.chem.msu.ru/cgibin/tkv.pl?show=welcome.html/welcome.html (дата обращения: 20.11.2024).
- 5. **База American Chemical Society (ACS):** Некоммерческое научное издательство. Американское химическое общество, 2021. URL: http://pubs.acs.org (дата обращения: 11.12.2024). Режим доступа: свободный.
- 6. Электронная версия базы данных ECS издательства Electrochemical Society: Научное издательство IOP Publishing, 2021. URL: http://ecsdl.org/ (дата обращения: 12.12.2024). Режим доступа: для зарегистрир. пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, основанное на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий и самостоятельной работы студентов формами и видами взаимодействия преподавателей и обучающихся в электронной образовательной среде.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: электронная почта, платформа ZOOM, а также иные виды информационно-коммуникативных технологий сети Интернет, обеспечивающие оперативный канал связи преподавателя со студентом.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в форме тестирования в ОРИОКС.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория №	Компьютер с ПО и	OC Microsoft Windows 7
4136 «Лаборатория	возможностью подключения к	MS Office
микроскопии»	сети Интернет и обеспечением	браузер
	доступа в электронную	
	информационно-	
	образовательную среду МИЭТ,	
	беспроводная клавиатура +	
	мышь, проектор,	
	микроскопы: МИИ4-М,	
	микроскопы	
	металлографические «МЕТАМ	
	PB21- 1»	
Помещение для	Компьютерная техника с	Операционная система Windows
самостоятельной	возможностью подключения к	от 7 версии;
работы обучающихся	сети «Интернет» и	Пакет программ Microsoft
	обеспечением доступа в	Office;
	электронную информационно-	Браузер
	образовательную среду МИЭТ	Acrobat reader DC
		Проигрыватель Windows Media

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции **ПК-2.МИМС** Способен осуществлять выбор и проводить исследования свойств и состава материалов и структур
- 2. ФОС по подкомпетенции **ПК-3.МИМ**С Способен проводить выбор методов исследования материалов различной размерности

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины в электронной информационной образовательной среде ОРИОКС // URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

- В рамках рассматриваемого курса предусмотрены следующие формы учебных занятий:
- *лекции*, цель которых состоит в формировании знаний путем рассмотрения теоретических вопросов дисциплины;

- *практические занятия*, цель проведения которых формирование умений путем выполнения практико-ориентированных заданий;
- *пабораторные занятия*, цель проведения которых формирование навыков и приобретение опыта проведения измерений и использования измерительных средств;
- *внеаудиторная самостоятельная работа*, цель которой закрепление полученных знаний и подготовка к практическим (лабораторным) занятиям, приобретение опыта самостоятельной работы с различными источниками информации.

Для успешного усвоения нового материала необходимо просматривать ранее пройденный материал по соответствующим предметам и разделам. Например,

- 1. Для изучения тем разделов «Рентгенографические методы исследования структуры» и «Оптические и электронно оптические методы исследования структуры» необходимы знания разделов курсов: «Кристаллография», «Физика», «Математический анализ». Знания методов численного решения дифференциальных уравнений, разделов курсов: «Теория вероятностей», «Линейная алгебра»; курса «Физико-химические основы технологии интегральных микро- и наноструктур».
- 2. Изучение раздела «Спектральные методы анализа состава твердых тел» предполагает знания
 - основ зонной теории полупроводников,
 - оптических и фотоэлектрических явлений в полупроводниках.
- 3. Изучение раздела «Основы световой, рентгеновской и электронной микроскопии» требует знаний разделов курсов: «Физика». Раздел «Оптика», темы: «Интерференция», «Дифракция», «Основы когерентной оптики».
- 4. Изучение раздела «Методы контроля электрофизических параметров изделий электронной техники» требует знаний разделов курсов: «Электротехника», «Физика. Оптика».

Приступать к лабораторным работам необходимо после изучения теоретического материала, рекомендованного преподавателем в рамках самостоятельной работы. и изучения описания соответствующей лабораторной работы.

Для выполнения лабораторного практикума в библиотеке МИЭТ имеются учебнометодические пособия. Можно воспользоваться также разработками лабораторных работ, находящихся на кафедре, и активно использовать учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС // URL: http://orioks.miet.ru/). Студенты получают допуск к лабораторной работе после ознакомления с описанием лабораторной работы. Для получения допуска необходимо правильно ответить на контрольные вопросы к теоретической части, приведенные в конце описания лабораторной работы.

Контроль выполнения студентами индивидуальных практико-ориентированных заданий 1 и 2 (на обработку и интерпретацию результатов измерений параметров наноматериалов и наноструктур; на выбор методов исследования материалов) проводится на семинарах во время контрольных работ 1 и 2.

Наиболее сложные и проблемные вопросы курса могут быть разъяснены обучающимся во время очных консультаций и дистанционных консультаций с использованием современных коммуникационных платформ и электронной почты.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система (НБС).

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 50 баллов) и сдача экзамена (в сумме 50 баллов).

По сумме баллов выставляется итоговая оценка по предмету.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 – 69	3
70 – 85	4
86 – 100	5

РАЗРАБОТЧИК:		
Доцент Института ПМТ, к.т.н., доцент	Chaeer -	Л.И.Матына

Рабочая программа дисциплины «Методы исследования материалов и структур» по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», направленности (профилю) «Технологии материалов микроэлектроники» разработана в Институте ПМТ и утверждена на заседании Ученого совета Института 19 декабря 2024 года, протокол № 16 /С.В.Дубков/ Директор Института ПМТ Лист согласования Рабочая программа согласована с Передовой инженерной школой /А.Л.Переверзев / Директор ПИШ Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества _/И.М.Никулина / Начальник АНОК Рабочая программа согласована с библиотекой МИЭТ

/Т.П.Филиппова/

Директор библиотеки