Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрович Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора
Дата подписания: 01.07.2023 10.17.51

уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г.Балашов

www 2

_202<u> </u>Г.

137 M. 37 July

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Проектирование систем на кристалле»

Направление подготовки – 11.04.03 «Конструирование и технология электронных средств»

Направленность (профиль) - «Комплексное проектирование микросистем»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция ПК-4 «Способен проектировать устройства, приборы и системы электронной техники с учетом заданных требований» сформулирована на основе профессионального стандарта 25.036 «Специалист по электронике бортовых комплексов управления (БКУ)».

Обобщенная трудовая функция

- <u>С</u>. Техническое управление созданием и эксплуатацией электронных систем БКУ.

Трудовая функция

- $\underline{\mathbf{C}/02.7}$ Техническое управление разработкой и производством электронных средств и электронных систем БКУ

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций			
ПК-4.СнК. Способен	Проектирование	Знания: принципов подготовки			
проектировать	электронных средств,	технических заданий на			
аналоговые,	приборов и систем с	аналоговые, цифровые,			
цифровые,	учетом заданных	смешанные электронные блоки и			
смешанные	требований.	устройства в соответствии с			
электронные блоки и		техническим заданием			
устройства		Умения: разрабатывать			
различного		аналоговые, цифровые,			
назначения уровня		смешанные электронные блоки и			
система на кристалле		устройства различного			
в соответствии с		назначения			
техническим		Опыт деятельности:			
заданием.		схемотехнического и			
		топологического проектирования			
		аналоговых, цифровых,			
		смешанных электронных блоков			
		и устройства различного			
		назначения.			

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы, изучается на 1 курсе 1 семестра магистратуры (очная форма обучения).

Входные требования к дисциплине.

Знание основных видов физических и математических моделей изделий микро- и наноэлектроники;

Умение строить физические и математические модели изделий микро- и наноэлектроники;

Владение опытом практического применения физических и математических моделей изделий микро- и наноэлектроники.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		E)		Конта	актная раб	бота	ьна	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятел я работа (часы)	Промежуточная аттестация
1	1	6	216	32	32	-	116	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	K	Сонтактная раб	æ			
№ и наименование модуля	Лекции (часы)	Практические занятия (часы)	Лабораторны е работы (часы)	Самостоятельна я работа	Формы текущего контроля	
1. Введение.					Сдача	
Элементная база					лабораторных	
для					работ 1-2	
проектирования	16	-	8	20		
аналоговых и						
смешанных блоков						
для ИС.						

					Контрольная
2. Основы					работа 1
схемотехническог					
о проектирования					Сдача
и моделирования	4		8	32	лабораторных
аналоговых блоков	4	_	8	32	работ 3-4
с использованием					
современных					
САПР.					
3. Топологическое					Контрольная
проектирование					работа 2
аналоговых блоков					Сдача
с использованием					лабораторных
нанометровых	6	_	8	32	работ 5-6
кремниевых	U	_	0	32	
технологий в					
современных					
САПР.					
4. Верификация					Сдача
топологии					лабораторных
аналоговых блоков	6	_	8	32	работ 7-8
с использованием	U			32	
современных					
САПР.					

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1-2	4	Введение. Элементная база для проектирования аналоговых и смешанных блоков для ИС.
	3-4	4	Магнитная индукция и напряженность магнитного поля. Сила Лоренца и сила Ампера. Закон Био-Савара-Лапласа. Кривая намагничивания. Магнитная проницаемость. Краевой поток и воздушный зазор в сердечнике.

	5-6	4	Влияние краевого потока на величину индуктивности. Основные материалы сердечников.Потери в сердечнике. Скинэффект и эффект близости.
	7-8	4	Коэффициент заполнения окна, электрический режим, коэффициент геометрии. Законы теплообмена: кондукция, конвекция, излучение. Тепловое сопротивление.
2	9-10	4	Основы схемотехнического проектирования и моделирования аналоговых блоков с использованием современных САПР.
3	11-13	6	Понятие технологической библиотеки проекта. Маршрут проектирования топологии аналогового блока. Топологические методы борьбы с шумами и помехами.
4	14-16	6	Понятие процедуры верификации топологии аналоговых блоков с использованием современных САПР. DRC, LVSпроверки. Процедура экстракции паразитных составляющих на примере топологии аналогового блока. Методы уменьшения паразитных составляющих, вносимых на этапе топологического проектирования.

4.2. Практические занятия

Не предусмотрены.

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1	4	Исследование статических и динамических характеристик
			усилительных каскадов с помощью платформы Tanner MG.
	2	4	Исследование статических и
			динамических характеристик
			источников тока в аналоговых блоках
			с помощью маршрута MG.
2	3	4	Исследование операционных
			усилителей с использованием
			маршрута MG.

	4	4	Исследование СФ блоков с использованием маршрута MG.
3	5	4	Проектирование топологии усилительного каскада с использованием платформы Tanner MG. Верификации топологии усилительного каскада с использованием Calibre DRC MG, Calibre LVS MG.
	6	4	Проектирование топологии СФ блока с использованием платформы Tanner MG. Верификации топологии СФ блока с использованием Calibre DRC MG, Calibre LVS MG.
4	7	4	Экстракция топологии усилительного каскада с использованием CalibrexACT MG.
	8	4	Экстракция топологии СФ блока с использованием Calibrex ACT MG.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	8	Подготовка к лабораторной работе №1
	8	Подготовка к лабораторной работе №2
	4	Подготовка к экзамену
2	4	Подготовка к контрольной работе 1
	10	Подготовка к лабораторной работе №3
	10	Подготовка к лабораторной работе №4
	8	Подготовка к экзамену
3	4	Подготовка к контрольной работе 2
	10	Подготовка к лабораторной работе №5
	10	Подготовка к лабораторной работе №6
	8	Подготовка к экзамену
4	10	Подготовка к лабораторной работе №7
	10	Подготовка к лабораторной работе №8
	12	Подготовка к экзамену

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

- ✓ Методические указания студентам по организации изучения дисциплины «Проектирование систем на кристалле»;
 - ✓ Методические рекомендации преподавателям.
- ✓ Дополнительные материалы к дисциплине: видеоролики, презентации, статьи, нормативные документы.

Модуль 1 <u>«Введение. Элементная база для проектирования аналоговых и смешанных блоков для ИС»</u>

- ✓ Материал для подготовки к лабораторной работе 1
- ✓ Материал для подготовки к лабораторной работе 2
- **Модуль 2** «Основы схемотехнического проектирования и моделирования аналоговых блоков с использованием современных САПР»
 - ✓ Материал для подготовки к лабораторной работе 3
 - ✓ Материал для подготовки к лабораторной работе 4

Модуль 3 «Топологическое проектирование аналоговых блоков с использованием нанометровых кремниевых технологий в современных САПР»

- ✓ Материал для подготовки к лабораторной работе 5
- ✓ Материал для подготовки к лабораторной работе 6

Модуль 4 <u>«Верификация топологии аналоговых блоков с использованием</u> современных САПР»

- ✓ Материал для подготовки к лабораторной работе 7
- ✓ Материал для подготовки к лабораторной работе 8

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ Литература

- 1. Зебрев, Г. И. Физические основы кремниевой наноэлектроники : учебное пособие / Г. И. Зебрев. 4-е изд. Москва : Лаборатория знаний, 2020. 243 с. ISBN 978-5-00101-830-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/135537 (дата обращения: 06.08.2020). Режим доступа: для авториз. пользователей.
- 2. Муханин, Л. Г. Схемотехника измерительных устройств: учебное пособие / Л. Г. Муханин. 4-е изд., стер. Санкт-Петербург: Лань, 2019. 284 с. ISBN 978-5-8114-0843-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/111201 (дата обращения: 06.08.2020). Режим доступа: для авториз. пользователей.

- 3. Иванов, И. И. Электротехника и основы электроники : учебник / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. 11-е изд., стер. Санкт-Петербург : Лань, 2021. 736 с. ISBN 978-5-8114-0523-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/155680 (дата обращения: 06.08.2020). Режим доступа: для авториз. пользователей.
- 4. Скорняков, В. А. Общая электротехника и электроника : учебник / В. А. Скорняков, В. Я. Фролов. Санкт-Петербург : Лань, 2020. 176 с. ISBN 978-5-8114-4733-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/142339 (дата обращения: 06.08.2020). Режим доступа: для авториз. пользователей.

Периодические издания

- 1. НАНО- И МИКРОСИСТЕМНАЯ ТЕХНИКА: Ежемес. междисциплинарный теорет. и приклад. науч.-техн. журн. / РАН, Отделение информационных технологий и вычислительных систем. М. : Новые технологии : Наномикросистемная техника, 1999 -.
- 2. ИЗВЕСТИЯ ВУЗОВ. ЭЛЕКТРОНИКА: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 -.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1 eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 20.08.2020). Режим доступа: для зарегистрированных пользователей.
- 2 Электронно-библиотечная система Лань: сайт. Санкт-Петербург, 2011 . URL: https://e.lanbook.com/ (дата обращения: 20.08.2020). Режим доступа: для авторизованных пользователей МИЭТ.
- 3 SCOPUS: Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.08.2020). Режим доступа: для авторизованных пользователей МИЭТ.
- 6 Электронный фонд правовой и нормативно технической документации : сайт / Консорциум «Кодекс». Москва, 2021. URL: http://docs.cntd.ru/ (дата обращения: 20.08.2020).

7 Electronix : форум разработчиков электроники : сайт. - URL: https://electronix.ru/forum/ (дата обращения: 26.08.2020). - Режим доступа: для зарегистрированных пользователей.

8. Хабр: сайт. — 2006-2021. - URL: https://habr.com/ru/ (дата обращения: 26.08.2020).

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Студенты изучают дисциплину в традиционном либо в дистанционном формате.

В ходе реализации обучения используется обучение согласно модели «Face-to-Face Driver» («Драйвер — очное образование»): преподаватель в процессе личного взаимодействия дает основной объем образовательной программы. В ходе дистанционного обучения занятия проходят на общей электронной площадке (Skype).

Важную роль в процессе обучения играют лабораторные занятия, которые проводятся в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения проектирования и моделирования аналоговых, цифровых блоков и при защите полученных результатов. При наличии расхождений полученных результатов у разных групп проводится групповое обсуждение с целью выявления допущенных в ходе экспериментов разногласий («круглый стол»). В ходе дистанционного обучения занятия проходят на общей электронной площадке с возможностью удаленного доступа к лицензионному САПР.

Корпоративная информационно-технологическая платформа ОРИОКС (http://orioks.miet.ru).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения		
Учебная аудитория	Мультимедийное оборудование	OC Microsoft Windows Microsoft Office Acrobat Reader DC браузер		
Компьютерный класс «Учебно-научный центр проектирования Mentor	Компьютер (Intel Core i5)	OC Microsoft Windows Microsoft Office Acrobat Reader DC		

Graphics - МИЭТ» аудитория 4308		САПР Mentor Graphics браузер
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ.	OC Microsoft Windows Microsoft Office Acrobat Reader DC браузер

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ / ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-4.СнК.** Способен проектировать аналоговые, цифровые, смешанные электронные блоки и устройства различного назначения уровня система на кристалле в соответствии с техническим заданием.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к лекционным и лабораторным занятиям. При этом студент использует методические разработки, рекомендуемую литературу, библиотеку электронных модулей в электронной информационной образовательной среде ОРИОКС, Интернет-ресурсы, информационно-справочные системы.

Максимальная эффективность освоения материалов лекций достигается при предварительной подготовке к ней. Студенту рекомендуется заранее ознакомиться с предстоящей темой лекции и основными ее тезисами, подготовить вопросы к лектору по заинтересовавшим разделам.

Для закрепления знаний, полученных на лекционных занятиях проводятся лабораторные работы. Чтобы хорошо подготовиться к лабораторному занятию, студенту необходимо во время самостоятельной работы в системе ОРИОКС ознакомиться с описанием лабораторной работы и оформить теоретическую часть отчета в соответствии с изложенными в описании требованиями. Она включает описание объекта исследований, методики проводимых исследований. В рамках СРС также необходимо подготовиться к допуску к работе, для чего ответить на контрольные вопросы. К выполнению практической части работы допускается студент, продемонстрировавший при допуске знания объекта, имеющий заготовленные заранее формы представления результатов.

Лабораторные работы проводятся, как правило, в интерактивном режиме при работе в малых группах и диалоге с преподавателем.

По завершению изучения дисциплины предусмотрен экзамен, при этом оценка итогов учебной деятельности студента основана на балльно-рейтинговой системе.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльнорейтинговая система.

Баллами оцениваются: выполнение каждого контрольные мероприятия в семестре и активность/посещаемость (в сумме до 70 баллов), сдача экзамена (в сумме до 30 баллов). Перечень контрольных мероприятий и методика их балльной оценки изложена в МУС.

По сумме баллов выставляется итоговая оценка по предмету.

Структура и сроки сдачи контрольных мероприятий см. в журнале успеваемости в ОРИОКС, http://orioks.miet.ru/

РАЗРАБОТЧИК:

Доцент Института НМСТ, к.т.н.

/Горшкова Н.М./

Рабочая программа дисциплины «Проектирование систем на кристалле» по направлению 11.04.03 «Конструирование и технология электронных средств» направленности (профилю) «Комплексное проектирование микросистем» разработана в Институте НМСТ и утверждена на заседании Института НМСТ от 27 мая 2025 года, протокол № 11

Директор Института НМСТ д.т.н., профессор /С.П. Тимошенков/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая	программа	согласована	c	Центром	подготовки	К	аккредитации	И	независимой
оценки к	ачества (АЕ	ЮК)							

Начальник АНОК

/И.М. Никулина/

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки _______/Т.П. Филиппова/