Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александр Министерство науки и высшего образования Российской Федерации

Должность: Ректор Федеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 16.07.2024 12:44:57

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d/ocsfobeas82bdd002ct итут электронной техники»

⁹ТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

202 \(\mathcal{r} \).

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Нейронные сети»

Направление подготовки - 02.03.01 «Математика и компьютерные науки» Направленность (профиль) - «Компьютерная математика и анализ данных»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-3 «Способен применять современные математические методы и программные технологии обработки и анализа данных» сформулирована на основе профессионального стандарта 06.042 «Специалист по большим данным»

Обобщенная трудовая функция «А Анализ больших данных с использованием существующей в организации методологической и технологической инфраструктуры»

Трудовые функции: «А/04.6 Проведение аналитического исследования с применением технологий больших данных в соответствии с требованием заказчика»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональ- ной деятельности	Индикаторы достижения под- компетенций
ПК-3.НС. Способен использовать абстрактные модели нейронных сетей при решении задач в области естественных наук и инженерной практике.	Разработка, отладка и модификация программного обеспечения в сфере обработки больших данных, а также проведение аналитических исследований с использованием полученного программного обеспечения.	Знаем основные понятия теории нейронных сетей и теоретическое обоснование их стандартных моделей, алгоритмы обучения нейронных сетей. Умеем выбирать в зависимости от типа задачи подходящую модель нейронной сети, изменяя при необходимости её конфигурацию, а также выбирать подходящий алгоритм для её обучения. Имеем опым приложения нейросетевых моделей к решению прикладных задач: классификации, аппроксимации, фильтрации помех, а также сегментации изображений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Для изучения дисциплины студент должен владеть основами линейной алгебры, математического анализа, теории вероятности и численных методов.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		45	ZT.	Контактная работа			pa-	атте-	
Kypc	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные ра- боты (часы)	Практические за- нятия (часы)	Самостоятельная ј бота (часы)	Промежуточная ат стация	
3	5	3	108	16	32	-	60	ЗаО	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная ра	абота	81	Формы текущего контроля	
№ и наименова- ние модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа		
					Защита индивидуального задания лабораторной работы 1 Защита индивидуального задания лабораторной работы 2	
1. Нейронные сети и их приложение	16	32	-	60	Защита индивидуального задания лабораторной работы 3 Защита индивидуального задания лабораторной работы 4	
	į				Защита индивидуального задания лабораторной работы 5 Защита индивидуального задания лабораторной работы 6	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий	(часы)	Краткое содержание
1	1	4		Многослойные персептроны. Метод обратного распространения
				ошибки, эффект переобучения, паралич коэффициентов. Построение
				глубоких нейросетевых моделей, проблема экспоненциального зату-
				хания градиента ошибки. Сети Хопфилда и ассоциативная память,

		рассчет энергии сети, сравнение с моделями перспептронов. По-
		строение сетей плотной ассоциативной памяти (Dense Associative
		Memories) на основе альтернативной формы энергии сети Хопфилда.
2	2	Сверточные сети. Слой свертки и субдискретизации. Принципы
		обучения с переносом, модели на основе данных Imagenet. Построе-
		ние автоэнкодеров на основе прямых и обратных слоев свертки.
		Расширение обучающей выборки за счет случайных поворотов, от-
		ражений и масштабирования с обрезанием исходных изображений
		(метод аугментации обучающей выборки).
3	2	Рекуррентные нейронные сети. Обратное распространение во вре-
		мени, сети долгой кратковременной памяти (LSTM). Решение про-
		блемы экспоненциального затухания градиента ошибки в архитекту-
		ре LSTM. Использование сетей LSTM для генерации последователь-
		ностей.
4	2	Модифицированные методы градиентного спуска. Пакетный и
		стохастический градиентный спуск. Оптимизация алгоритма с помо-
		щью методов Нестерова, AdaGrad, Adam и Momentum. Решение про-
		блемы переобучения с помощью слоев Dropout, методов регуляриза-
		ции, а также слоев пакетной нормализации (Batch Normalization).
5	2	Генеративно состязательные модели. Резидуальные сети, сквозное
		подключение слоев, модели класса U-net и их приложение к построе-
		ние ріх2ріх архитектуры. Общие принципы генеративно состязатель-
		ных моделей (GAN), обучение как состязательная игра между генера-
		тором и дискриминатором.
6	4	Слои внимания и трансформеры. Основные типы слоев для реали-
		зации механизма внимания (Attention), а также их приложение к ре-
		шению задачи машинного перевода. Применение сверточных сетей
		вместе с трансформерами для задач формирования описаний к изо-
		бражениям и интеллектуального поиска изображений по их содер-
		жимому.

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные работы

№ модуля	№ лабораторной	Объем занятий (ча-	Наименование работы
дисциплины	работы	сы)	
1	1	4	Многослойные персептроны.

2	6	Сверточные сети.
3	6	Сети долгой кратковременной памяти.
4	6	Генеративно состязательные модели.
5	6	Трансформеры и слои внимания.
6	4	Сети Хопфилда и ассоциативная память.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	12	Подготовка к лабораторным работам 1 - 6
	6	Выполнение индивидуального задания к лабораторной работе 1 и подго-
		товка к его защите
	6	Выполнение индивидуального задания к лабораторной работе 2 и подго-
		товка к его защите
	6	Выполнение индивидуального задания к лабораторной работе 3 и подго-
		товка к его защите
	6	Выполнение индивидуального задания к лабораторной работе 4 и подго-
	2	товка к его защите
	6	Выполнение индивидуального задания к лабораторной работе 5 и подго-
		товка к его защите
	6	Выполнение индивидуального задания к лабораторной работе 6 и подго-
		товка к его защите
1	12	Подготовка к зачету.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯ-ТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (OPИOKC// URL: http://orioks.miet.ru/:

Общее

- ✓ Методические указания студентам по изучению дисциплины Модуль 1 «Нейронные сети и их приложение»
- ✓ Планы лабораторных работ с перечнем индивидуальных заданий
- ✓ Тексты лекций (для всех видов самостоятельной работы)
- ✓ Презентации лекций (для всех видов самостоятельной работы)

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Умняшкин С.В. Основы компьютерного зрения и распознавания образов: Учеб. пособие / С.В. Умняшкин, Р.В. Голованов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2019. 264 с. ISBN 978-5-7256-0914-1
- 2. Ярышев С. Н., Рыжова В. А. Технологии глубокого обучения и нейронных сетей в задачах видеоанализа: Учебное пособие / С. Н. Ярышев, В. А. Рыжова. Санкт-Петербург, Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2022. 82 с. URL: https://e.lanbook.com/book/283967 (дата обращения: 17.12.2022).
- 3 Тарков М.С. Нейрокомпьютерные системы / М.С. Тарков. М.: ИНТУИТ, 2016. 170 с. URL: https://e.lanbook.com/book/100268 (дата обращения: 17.12.2022).
- 4. Антонио Джулли. Библиотека Keras инструмент глубокого обучения. Реализация нейронных сетей с помощью библиотек Theano и TensorFlow / Антонио Джулли, Суджит Пал. М. : ДМК Пресс, 2018. 284 с. URL: https://e.lanbook.com/book/111438 (дата обращения: 17.12.2022). ISBN 978-5-97060-573-8 : 0-00.

Периодические издания

1. ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ: научный журнал / Российская академия наук, Вычислительный центр им. А. А. Дородницына РАН. - PAH, 1961 - . - URL: http://www.mathnet.ru/php/journal.phtml?jrnid=zvmmf&option_lang=rus (дата обращения: 17.12.2022). - ISSN 0044-4669 (print).

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 17.12.2022). Режим доступа: для авторизированных пользователей МИЭТ
- 2. eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 17.12.2022). Режим доступа: для зарегистрированных пользователей
- 3. Маth-Net.Ru: общероссийский математический портал: сайт. Москва, Математический институт им. В. А. Стеклова РАН, 2020. URL: http://www.mathnet.ru/ (дата обращения: 12.12.2022). Режим доступа: для зарегистрированных пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Учебный процесс реализуется в формате смешанного обучения.

Применяется расширенная виртуальная модель обучения, предполагающая обязательное присутствие студентов на очных учебных занятиях с преподавателем и после-

дующую самостоятельную работу студента по теме занятия. Работа происходит по следующей схеме:

- (1) лекция (контактная работа по расписанию занятий) СРС (проработка лекционного материала с использованием текста, презентации, видео записи лекции);
- (2) лабораторная работа (контактная работа по расписанию занятий) СРС (выполнение индивидуальных заданий). Консультирование по ходу выполнения заданий.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел «Домашние задания» ОРИОКС, форумы в электронном курсе MOODLE, электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специаль- ных помещений и поме- щений для самостоятель- ной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Учебная доска Мультимедийное оборудование (компьютер с ПО и возможностью подключения к сети Интернет и обеспечением доступа в электроннообразовательную среду МИЭТ; телевизоры; акустическое оборудование (микрофон, звуковые колонки))	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC
Компьютерный класс	Системный блок Intel Core i5, монитор TFT 21,5" AOC i2269Vw	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC, Python (Anaconda), Visual Studio,
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду	Операционная систе- систе- ма Microsoft Windows от 7 версии и выше, Microsoft Office Profe ssional Plus или Open Office,

ТЄИМ	браузер (Fire-
	fox, Google Chrome);
	Acrobat reader DC, Python
_	(Anaconda), Visual Studio

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК.3.** Способен использовать абстрактные модели нейронных сетей для построения интегрированного программного обеспечения в области обработки и анализа больших данных.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИ-OKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Лекции и лабораторные занятия проводятся контактно в соответствии с расписанием. Посещение лекций и лабораторных занятий обязательно. Дополнительной формой контактной работы являются консультации (их посещать необязательно).

Перечень доступных студентам учебно-методических материалов приведен в п. 5, 6, 7.

Набор заданий лабораторных работ включает практико-ориентированные задания на опыт деятельности.

Подробное описание организации процесса обучения, системы контроля и оценивания изложено в «Методических рекомендациях студентам по изучению дисциплины».

11.2. Система контроля и оценивания

Система контроля включает мероприятия текущего контроля и промежуточную аттестацию. Текущий контроль состоит из сдачи и защиты лабораторных работ. Промежуточная аттестация проходит в форме зачета.

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система. Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (защита лабораторных) и сдача зачета. Максимальный суммарный балл — 100.

Важное значение придается соблюдению сроков сдачи контрольных мероприятий. Задержка в сдаче приводит к уменьшению числа баллов, начисляемых за выполнение, вплоть до полной их потери (соответствующие правила прописаны в «Методических рекомендациях студентам по изучению дисциплины»).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

Разработчик:		
Старший преподаватель _	(thelee	/Назаров М.Н./

Рабочая программа дисциплины «Нейронные сети» по направлению подготовки 02.03.01
«Математика и компьютерные науки», направленность (профиль) «Компьютерная мате-
матика и анализ данных», разработана на кафедре ВМ-1 и утверждена на заседании ка-
федры <u>25.03</u> 202 <u>4</u> года, протокол № <u>8</u>

Заведующий кафедрой ВМ-1 Ялм /А.А. Прокофьев/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

_/Никулина И.М./

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки ______/Филиппова Т.П./