Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрович

Должность: И.О. Ректора Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 27:06:2023 13:44.55

МИНОБРНАУКИ РОССИИ

«Национальный исследовательский университет

Уникальный программный ключ:

«Московский институт электронной техники» f17218015d82e3c1457d1df9e244def505047355

УТВЕРЖДАЮ

Проректор по учебной работе

А. Г. Балашов

РАБОЧАЯ ПРОГРАММА ПРАКТИКИ

Вид практики: Производственная практика Тип практики — преддипломная практика

Направление подготовки — 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) — «Элементная база наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Производственная преддипломная практика участвует в формировании следующих компетенций/подкомпетенций:

Компетенция ПК-1 Способен формулировать цели и задачи научных исследований в соответствии с тенденциями и перспективами развития электроники и наноэлектроники, а также смежных областей науки и техники, способностью обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач сформулирована на основе профессиональных стандартов:

40.037 Специалист по разработке технологии производства приборов квантовой электроники и фотоники

Обобщенная трудовая функция: Разработка концепции технологии производства приборов квантовой электроники и фотоники на основе наноструктурных материалов.

Трудовые функции: Е/02.7 «Разработка технического задания на выбор полупроводниковых структур и вспомогательных материалов для реализации приборов с заданными параметрами»

Тип задач профессиональной деятельности - Научно-исследовательский

Подкомпетенции,	Davarra washaaayayayayay	Индикаторы достижения	
формируемые на	Задачи профессиональной	подкомпетенций	
практике	деятельности	подкомпетенции	
ПК-1.ПДПМ	- разработка рабочих планов	Опыт деятельности:	
Способен	и программ проведения	- выбор подходящих методов	
сформулировать цели	научных исследований и	решения поставленных	
и задачи научных	технических разработок,	научных задач;	
исследований в своей	подготовка отдельных		
области исследований	заданий для исполнителей;		
в соответствии с			
тенденциями и	- сбор, обработка, анализ и		
перспективами	систематизация научно-		
развития электроники	технической информации по		
и наноэлектроники, а	теме исследования, выбор		
также смежных	методик и средств решения		
областей науки и	задачи;		
техники, способен			
обоснованно выбрать	- разработка методики и		
теоретические и	проведение исследований и		
экспериментальные	измерений параметров и		
методы и средства	характеристик изделий		
решения	электронной техники, анализ		
поставленных задач	их результатов;		

- использование физических эффектов при разработке новых методов исследований и изготовлении макетов измерительных систем;
- разработка физических и математических моделей, компьютерное моделирование исследуемых физических процессов, приборов, схем и устройств, относящихся к профессиональной сфере;
- подготовка научнотехнических отчетов, обзоров, рефератов, публикаций по результатам выполненных исследований, подготовка и представление докладов на научные конференции и семинары;

Компетенция ПК-3 Способен делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения **сформулирована на основе профессиональных стандартов:**

40.104 Специалист по измерению параметров и модификации свойств наноматериалов и наноструктур.

Обобщенная трудовая функция: Руководство подразделениями по измерениям параметров и модификации свойств наноматериалов и наноструктур.

Трудовая функция: Организация и контроль процессов измерений параметров и модификации свойств наноматериалов и наноструктур (D/01.7)

Тип задач профессиональной деятельности: - Научно-исследовательский

Подкомпетенции,		
формируемые на	Задачи профессиональной	Индикаторы достижения
практике	деятельности	подкомпетенций
ПК-3.ПДПМ	- разработка рабочих планов и	Опыт деятельности:
Способен делать	программ проведения научных	- опыт обработки и анализа
научно-обоснованные	исследований и технических	результатов
выводы по	разработок, подготовка	экспериментальных
результатам	отдельных заданий для	исследований.
теоретических и	исполнителей;	постодовинии
экспериментальных	- сбор, обработка, анализ и	
исследований в своей	систематизация научно-	
области	технической информации по теме	
исследований, давать	исследования, выбор методик и	
рекомендации по	средств решения задачи;	
совершенствованию		
устройств и систем,	- разработка методики и	
готовить научные	проведение исследований и	
публикации и заявки	измерений параметров и	
на изобретения	характеристик изделий	
	электронной техники, анализ их	
	результатов;	
	- использование физических	
	эффектов при разработке новых	
	методов исследований и	
	изготовлении макетов	
	измерительных систем;	
	- разработка физических и	
	математических моделей,	
	компьютерное моделирование	
	исследуемых физических	
	процессов, приборов, схем и	
	устройств, относящихся к	
	профессиональной сфере;	
	- подготовка научно-технических	
	отчетов, обзоров, рефератов,	
	публикаций по результатам	
	выполненных исследований,	
	подготовка и представление	
	докладов на научные	
	конференции и семинары;	

2. МЕСТО ПРАКТИКИ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Основной миссией образовательной программы (ОП) является формирование у студентов социальных, личностных и профессиональных качеств, необходимых для жизни в современном обществе и обеспечивающих широкий спектр возможностей. Создание основы для синтеза современного инженерного образования и фундаментальной физико-математической подготовки, необходимого для осуществления успешной научно-исследовательской и инновационной деятельности в области современных высоких технологий, в частности, нанотехнологий в электронике. Подготовка квалифицированных специалистов, востребованных научно-исследовательскими организациями и предприятиями, ведущими работы по разработке и созданию элементной базы электроники и наноэлектроники.

Практика входит в часть, формируемую участниками образовательных отношений Блока 2 «Практика» образовательной программы.

Входные требования к практике

- знание основ построения и функционирования изделий микро- и наноэлектроники, а также знание физико-химических основ материалов и структур микроэлектроники;
- умение применять знания разделов высшей математики (в частности, дифференциальное и интегральное исчисление, методы вычислительной математики) и физики для описания физических закономерностей лежащих в основе функционирования исследуемых устройств и технологических процессов, а также умение пользоваться средствами исследования процессов и устройств;
- владение стандартными компьютерными программами, используемыми для анализа и обработки информации, а также компетенциями в области основ программирования.

Производственная преддипломная практика проводится в 4 семестре с 11 по 16 неделю.

3. ОБЪЁМ ПРАКТИКИ

Объём практики — 12 ЗЕТ (432 ак. часов).

Практика организуется с 11 по 16 неделю 4-го семестра.

Промежуточная аттестация – Зачет с оценкой.

4. СОДЕРЖАНИЕ ПРАКТИКИ

Целью практики является формирование всех компетенций, указанных в п.1, независимо от места прохождения практики. Содержание практики соответствует направлению и профилю подготовки.

Основной целью преддипломной практики является завершение выполнения, оформление и подготовка к защите магистерской ВКР. Преддипломная практика завершает обучение по ОП.

Для достижения цели практики используются следующие подходы:

– формирование и утверждение для каждого обучающегося проекта индивидуального задания (ИЗ) и Графика выполнения задания по подготовке ВКР;

- проведение организационных собраний и регулярных смотров хода выполнения заданий в соответствии с графиком текущего контроля прохождения практики в ОРИОКС:
- защита итогов практики и проведение промежуточной аттестации (дифференцированного зачета) в виде предзащиты ВКР на специально организуемой комиссии.

На этапах прохождения преддипломной практики формируются окончательные редакции заданий по проектному и научно-исследовательскому видам профессиональной деятельности. Базой для формирования заданий является ТЗ на объект исследования и разработки ВКР. Процесс прохождения преддипломной практики базируется также на компетенциях, сформированных в процессе прохождения предшествующих практик (учебной и производственной), и предусматривает апробацию разработанных и использованных технических решений, реализованных в результате выполненных теоретических и экспериментальных исследований и подтверждённых расчётами, теоретическими моделями и результатами компьютерного моделирования. Оформляется конструкторская (КД) и технологическая (ТД) документация, отвечающая требованиям ЕСКД и ЕСТД, формулируются выводы и рекомендации по результатам работы.

Итогом практики в 4 семестре является готовность ВКР и предзащита магистерской ВКР.

Пример типового задания по практике

1 1	
	Код формируемой
Содержание пунктов типового задания	компетенции
	(подкомпетенции)
1. Ознакомиться с проблемами и состоянием работ в других	ПК-1.ПДПМ
исследовательских лабораториях по данному направлению	
исследований.	
2. Написание литературного обзора для ВКР	
4. Оценить предельные возможности исследуемых наноструктур в	
качестве элементов интегральных схем.	
5. Написание теоретической части ВКР	
6. Получить практические навыки работы на установках для	ПК-3.ПДПМ
модификации исследуемых наноструктур.	
5. Разработать технологический маршрут формирования элемента	
электроники на основе исследуемой наноструктуры.	
6. Написание практической части ВКР	
7. Обработка и анализ результатов экспериментальных	
исследований, формулирование выводов по результатам	
теоретических и экспериментальных исследований.	

5. ФОРМЫ ОТЧЕТНОСТИ СТУДЕНТА

Обязательные:

1. Комплект документов: индивидуальное задание на практику, рабочий график (план) прохождения практики, отчет студента о результатах практики, полностью оформленная диссертация, презентация доклада, отзыв научного руководителя.

2. Рецензия (по готовности).

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции **ПК-1.ПДПМ** «Способен сформулировать цели и задачи научных исследований в своей области исследований в соответствии с тенденциями и перспективами развития электроники и наноэлектроники, а также смежных областей науки и техники, способен обоснованно выбрать теоретические и экспериментальные методы и средства решения поставленных задач». Оценка сформированности проводится по презентации, отчету и ответам на вопросы комиссии.
- 2. ФОС по подкомпетенции **ПК-3.ПДПМ** «Способен делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований в своей области исследований, давать рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения». Оценка сформированности проводится по презентации, отчету и ответам на вопросы комиссии.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК практики электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ Литература

- 1. Голубева Н.В. Математическое моделирование систем и процессов: учебное пособие / Н.В. Голубева. Санкт-Петербург: Лань, 2016. 192 с.
- 2. Ильичев Э.А. Экспериментальные методы исследований: Учеб. пособие. Ч. 1: Постановка задач. Физические основы. Физическое моделирование / Э.А. Ильичев; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2017. 124 с.
- 3. Ильичев Э.А.. Экспериментальные методы исследований: Учеб. пособие. Ч. 2: Методы измерений. Обработка результатов измерений / Э.А. Ильичев; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2018. 220 с.
- 4. Ильичев Э.А. Экспериментальные методы исследований: Учеб. пособие. Ч. 3: Основы метрологии / Э.А. Ильичев; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2018. 64 с.

Нормативная литература

1. ГОСТ 7.32-2017 **СИБИД. Отчет о научно-исследовательской работе. Структура и правила оформления (с Поправками)** = System of standards of information, librarianship and publishing. The research report. Structure and rules of presentation: Межгосударственный стандарт: Введ 01.07.2018: Взамен ГОСТ 7.32-2001. – Москва: Стандартинформ, 2018. [л.]. – URL: http://docs.cndt.ru/document/1200157208_(дата обращения: 16.06.2020). – Текст: электронный

2. ГОСТ Р 7.0.100-2018 СИБИД. Библиографическая запись. Библиографическое описание. Общие требования и правила оформления = System of standards of information, librarianship and publishing. Bibliographic record. Bibliographic description. General requirements and rules: Национальный стандарт РФ: Введ 01.07.2019: Введён впервые. — Москва: Стандартинформ, 2018. - [л.]. — URL: http://docs.cndt.ru/document/1200161674_(дата обращения: 16.06.2020). — Текст: электронный.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. ФИПС: Информационно-поисковая система: сайт. Москва, 2009 . URL: https://www1.fips.ru/elektronnye-servisy/informatsionno-poiskovaya-sistema/index.php (дата обращения: 27.11.2020)
- 2. APS Physics: [сайт] / American Physical Society Sites. URL: https://www.aps.org/ (дата обращения: 20.10.2020). Режим доступа: свободный.
- 3. Росстандарт. Стандарты и регламенты / Федеральное агентство по техническому регулированию и метрологии : сайт. URL: https://www.rst.gov.ru/portal/gost//home/standarts (дата обращения 15.10.2020).
- 4. ГОСТ Эксперт. Единая база ГОСТов РФ: сайт. URL: https://gostexpert.ru/ (дата обращения: 21.08.2020).

Дополнительные электронные ресурсы, учебная литература, периодические издания и информационные базы данных, необходимые для прохождения производственной практики (научно-исследовательской работы), определяются научным руководителем конкретного студента.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Место прохождения практики должно быть оснащено техническими и программными средствами необходимыми для выполнения целей и задач практики: портативными и/или стационарными компьютерами с необходимым программным обеспечением и выходом в Интернет, в том числе предоставляется возможность доступа к информации, размещенной в открытых и закрытых специализированных базах данных.

Конкретное материально-техническое обеспечение практики и права доступа студента к информационным ресурсам определяется научным руководителем конкретного студента, исходя из Технического задания на практику.

9. СИСТЕМА КОНТРОЛЯ И ОЦЕНИВАНИЯ

Для оценки успеваемости студентов по практике используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 40 баллов) и промежуточная аттестация, проводимая в форме публичной предзащиты ВКР на комиссии (60 баллов).

По сумме баллов выставляется итоговая оценка и выносится решение о допуске к защите на ГЭК. Структура и график контрольных мероприятий доступны в ОРИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК	И
--------------------	---

Старший преподаватель Института ИнЭл

Методисты

Лоцент Института ИнЭл, к. ф.-м. н.

/А. Е. Широков/ / К. А. Царик /

1 doo lan inporpalities inposition			
подготовки 11.04.04 «Электроника и наноэлектроника», направленности (профилю)			
«Элементная база наноэлектроники» разработана в институте ИнЭл и утверждена на			
заседании ученого совета института ИнЭл 03 декабря 2024 года, протокол № 6			
Директор института ИнЭл/В. В. Лосев/			
ЛИСТ СОГЛАСОВАНИЯ			
Рабочая программа согласована с Центром подготовки к аккредитации и независимой			
оценки качества			
Начальник АНОК/ И.М.Никулина /			
Рабочая программа согласована с библиотекой МИЭТ			
Директор библиотеки/ Т.П.Филиппова /			

Рабочая программа производственной преддипломной практики по направлению