Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрович Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора
Дата подписания: 03.07.2025 15.37.30

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355

«Московский институт электронной техники»

УТВЕРЖДАЮ
Проректор по учебной работе
А.Г. Балашов
2025 г.
М.П.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Технологии параллельного программирования»

Направление подготовки - 09.03.04 «Программная инженерия»

Направленность (профиль) — «Инженерия программного обеспечения и компьютерных систем»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-6 «Способен использовать объектно-ориентированную парадигму разработки программного обеспечения» **сформулирована на основе профессионального стандарта** 06.001 «Программист»

Обобщенная трудовая функция — Разработка требований и проектирование программного обеспечения

Трудовая функция D/01.6 Анализ возможностей реализации требований к компьютерному программному обеспечению

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-6.ТПП Способен	Проектирование и	Знания: современных
использовать знания	разработка программного	технологий параллельного
современных	обеспечения	программирования.
технологий		Умения: применять технологии
параллельного		OpenCL
программирования		Опыт деятельности: решения
для решения		практических задач с
практических задач		применением технологий CUDA

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине: сформированность компетенций, определяющих готовность разрабатывать схемы базовых алгоритмов и навыки обработки основных структур данных (массивов, матриц), знание основ алгоритмизации, теории графов, теории множеств.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		CTB	CTB	Контактная работа				
Курс	Семестр	Общая трудоёмко (ЗЕ)	Общая трудоёмко (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
3	5	5	180	16	48	-	80	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная раб	бота	B	
№ и наименование модуля	Лекции (часы) Лабораторные работы (часы) Практические занятия (часы)		Самостоятельная работа	Формы текущего контроля	
1. Основы параллельного и распределенного		12			Контроль выполнения и защита лабораторных работ 1-3
программирования графических сопроцессоров общего назначения	4		-	20	Контроль выполнения и защита ДЗ 1
2. Оптимизация CUDA программ, гибридное программирование	4	12	-	20	Контроль выполнения и защита лабораторных работ 4-6 Контроль выполнения и защита ДЗ 2
3. Технология программирования гетерогенных систем OpenCL	4	12	-	20	Контроль выполнения и защита лабораторных работ 7-9 Контроль выполнения и защита ДЗ 3
4. Когнитивные центры обработки данных	4	12		20	Контроль выполнения и защита лабораторных работ 10-12 Контроль выполнения и защита ДЗ 4

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание					
	Ì		Использование графических сопроцессоров общего назначения					
1	1	2	(GPGPU) для параллельных вычислений. Вычисления общего вида					
1			на GPU					
	2	2	Иерархия памяти и эффективное программирование CUDA					
	3	2	Прикладные CUDA библиотеки. Библиотека параллельных					
2	3	2	алгоритмов для C++ Thrust					
	4	2	Оптимизация CUDA программ					
	5	2	Технология программирования гетерогенных систем OpenCL.					
3	3	3	3	3	3	3	2	Введение
)	6	2	Технология программирования гетерогенных систем OpenCL.					
	U		Архитектура, простейшие программы					
4	7	2	Технология SYCL					
7	8	2	Когнитивные центры обработки данных					

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной паботы	Объем занятий (часы)	Наименование работы				
	1	4	Основы работы с технологией CUDA. Работа с глобальной памятью.				
1	2	4	Гибридное программирование. Использование библиотеки Thrust.				
1	3	4	Работа с разделяемой памятью. Реализация базовых операций над				
	3	4	массивами на CUDA: редукция, префиксная сумма				
	4	4	Основы работы с технологией CUDA. Реализация базовых операций				
2	4	4	над массивами на CUDA: построение гистограмм и сортировка.				
2	5	4	Работа с текстурной памятью				
	6	4	Цифровая обработка сигнала с использованием технологии CUDA				
3	7 4 Распараллеливание квадратурной формулы с использованием технологии MPI.						

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
	8	4	Вычисление числа Пи
	9	4	Измерение производительности кластерных систем. LU-разложение.
	10	4	Разработка, отладка и запуск программы с использованием технологии OpenCL
4	4 11		Фильтрация изображения с использованием технологии OpenCL и текстурной памяти
0	12	4	Фильтрация изображения с использованием технологии OpenCL и текстурной памяти

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	10	Изучение теоретического материала по рекомендованной литературе,
		подготовка к лабораторным работам.
	10	Выполнение ДЗ 1 по теме «CUDA».
2	10	Изучение теоретического материала по рекомендованной литературе,
		подготовка к лабораторным работам.
	10	Выполнение ДЗ 2 по теме «Thrust»
3	10	Изучение теоретического материала по рекомендованной литературе,
		подготовка к лабораторным работам
	10	Выполнение ДЗ 3 по теме «МРІ»
4	10	Изучение теоретического материала по рекомендованной литературе,
		подготовка к лабораторным работам
	10	Выполнение ДЗ 4 по теме «OpenCL»

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: , http://orioks.miet.ru/):

Общие документы

- ✓ Сценарий обучения по дисциплине «Технологии параллельного программирования»
- ✓ Методические указания студентам по освоению дисциплины
- ✓ Список литературы

Модули 1-4

- ✓ Методические указания по выполнению СРС
- ✓ Методические указания по выполнению лабораторных работ
- ✓ Материалы для самостоятельного изучения теории в рамках выполнения текущих домашних заданий
- ✓ Задания на самостоятельную работу для изучения теории в рамках подготовки к ДЗ

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Янакова Е.С. Основы работы с технологией CUDA: Лабораторный практикум по курсу "Параллельное и распределенное программирование" / Е.С. Янакова, Т.В. Жертунова; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2016. 64 с.
- 2. Основы работы с технологией Cuda / A.B. Боресков, А.А. Харламов. М: ДМК Пресс, 2010. 232 с. URL: https://e.lanbook.com/book/1260 (дата обращения: 24.04.2025). ISBN 978-5-94074-578-5.
- 3. Параллельные вычисления на GPU. Архитектура и программная модель CUDA: Учебное пособие / А. В. Боресков, Н.Д. Марковский; Микушин, Д.Н. и др. М.: Издательство Московского университета, 2012. 336 с.
- 4. Сандерс Дж. Технология CUDA в примерах. Введение в программирование графических процессоров = CUDA by Example: An Introduction to general-purpose GPU Programmong / Сандерс Дж., Э. Кэндрот; [пер. с англ.]; Предисл. Дж. Донгарра; науч, ред. А.В. Боресков. М.: ДМК Пресс, 2011. 232 с. URL: https://e.lanbook.com/book/3029 (дата обращения: 24.04.2025). ISBN 978-5-94074-504-4
- 5. Богачёв, К.Ю. Основы параллельного программирования: учебное пособие / К.Ю. Богачёв. Электрон, дан. М.: Издательство "Лаборатория знаний", 2015. 345 с. Режим доступа: https://e.lanbook.com/book/70745 (дата обращения: 24.04.2025)
- 6. Гергель, В.П. Теория и практика параллельных вычислений: учебное пособие / В.П. Гергель. Электрон, дан. М.: Интуит, 2016. 500 с. Режим доступа: https://e.lanbook.com/book/100527 (дата обращения: 24.04.2025)
- 7. Intel Parallel Programming Professional (Introduction) : учебное пособие / В.П. Гергель [и др.]. Электрон, дан. Москва : , 2016. 568 с. Режим доступа: https://e.lanbook.com/book/100606 (дата обращения: 24.04.2025)

Периодические издания

1. Программные системы: теория и приложения: Электронный научный журнал / Ин-т программных систем им. А.К. Айламазяна РАН. - Переславль-Залесский, 2010 -. - URL: http://psta.psiras.ru/archives/archives.html (дата обращения: 24.04.2025).

- 2. Программирование / Ин-т системного программирования РАН. М.: Наука, 1975 -. URL: http://elibrarv.ru/contents.asp?titleid=7966 (дата обращения: 24.04.2025).
- 3. Естественные и технические науки / Издательство "Спутник+". М. : Спутники-, 2002 . URL : http://www.sputnikplus.ru/ (дата обращения: 24.04.2025).

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. SWRIT. Профессиональная разработка технической документации: сайт. URL: https://www.swrit.ru/gost-espd.html (дата обращения: 24.04.2025)
- 2. Лань : Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 24.04.2025). Режим доступа: для авторизированных пользователей МИЭТ.
- 3. eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 24.04.2025). Режим доступа: для зарегистрированных пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Применяются следующие модели обучения: «Перевернутый класс» - учебный процесс начинается с постановки проблемного задания, для выполнения которого студент должен самостоятельно ознакомиться с материалом, размещенным в электронной среде. В аудитории проверяются и дополняются полученные знания с использованием докладов, дискуссий и обсуждений. Работа поводится по следующей схеме: СРС (онлайновая предаудиторная работа) - аудиторная работа (обсуждение с представлением презентаций с применением на практическом примере изученного материала) - обратная связь с обсуждением и подведением итогов. «Расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях с последующим самостоятельным выполнением индивидуального задания в мини-группах и индивидуально. Работа поводится по следующей схеме: аудиторная работа (обсуждение с отработкой типового задания с последующим обсуждением) - СРС (онлайновая работа с использованием онлайнресурсов, в т.ч. для организации обратной связи с обсуждением, консультированием, рецензированием с последующей доработкой и подведением итогов).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы: шаблоны и примеры оформления выполненной работы, разъясняющий суть работы видеоролик, требования к выполнению и оформлению результата.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Аудитория с комплектом мультимедийного оборудования	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC
Компьютерный класс	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC, Microsoft Visual Studio
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC, Microsoft Visual Studio

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-6.ТПП «Способен использовать знания современных технологий параллельного программирования для решения практических задач».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Лекционные занятия проводятся в традиционной форме с использованием мультимедийных презентаций. На каждой лекции студенты должны составить краткий конспект по теме лекции. При изучении теоретических материалов необходимо обратить внимание на основные моменты и замечания. Лабораторные работы. Перед выполнением

лабораторных работ необходимо изучить материалы лекций и рекомендуемую литературу по каждой теме.

Лабораторные работы необходимо подготовить дома, выполнить и защитить в компьютерном классе. Предполагается последовательное выполнение лабораторных работ, поскольку каждое следующее задание основано на использовании навыков и знаний, полученных при выполнении предыдущих заданий. Результатом выполнения лабораторных работ является отчет (документ MS Office), составленный и оформленный в соответствии с требованиями и схема алгоритма решения поставленной задачи

В дисциплине предполагается выполнение домашних заданий с защитой их результатов. Защита проводится на лекционных занятиях частями по ходу выполнения СРС и в соответствии с тематикой занятий.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительно-балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 80 баллов) и сдача экзамена (до 20 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Профессор СПИНТех, д.т.н *Fleloff* / Е.С.Янакова/

Рабочая программа дисциплины «Технологии параллельного программирования» по направлению подготовки 09.03.04 «Программная инженерия» направленности (профилю) «Инженерия программного обеспечения и компьютерных систем» разработана в Институте СПИНТех и утверждена на заседании Института 2306 2025 года, протокол № 18

Директор института СПИНТех <u> </u>
ЛИСТ СОГЛАСОВАНИЯ
Рабочая программа согласована с Центром подготовки к аккредитации и независимо
оценки качества
Начальник АНОК / И.М.Никулина /
Рабочая программа согласована с библиотекой МИЭТ
Директор библиотеки / Т.П.Филиппова /