Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александроминистерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 30.00.2023 16:37:23

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

«<u>В</u>» септебря 2024 г.

М.Π.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Основы методов машинного обучения искусственного интеллекта»

Направление подготовки — 09.04.01 «Информатика и вычислительная техника» Направленность (профиль) — «Лингвистические средства САПР сверхбольших интегральных схем и систем на кристалле»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

IC	Подкомпетенции,	Индикаторы достижения
Компетенция	формируемые в дисциплине	подкомпетенций
ПК-4	ПК-4. ОММОИИ	Знания современных методов
Способен	Способен применять	машинного обучения, искусственного
разрабатывать	методы машинного	интеллекта и нейронных сетей для
математическое и	обучения и	обработки данных в САПР ИС.
алгоритмическое	искусственного	Умения выбирать и применять
обеспечение САПР	интеллекта в задачах	подходящие алгоритмы и архитектуры
обеспечение СТПП	автоматизации	машинного обучения/ИИ для решения
	проектирования	конкретных задач САПР.
	интегральных схем	Опыт разработки программных
	интегральных ехем	модулей с использованием библиотек
		машинного обучения для
		автоматизации этапов проектирования
		ИС.
ПК-6	ПК-6. ОММОИИ	Знания принципов работы различных
Способен проводить	Способен проводить	алгоритмов машинного обучения,
исследование и анализ	исследование и	архитектур нейронных сетей, методов
алгоритмической и	анализ	оценки качества и производительности
математической	алгоритмической	алгоритмов.
составляющей	составляющей	Умения выбирать подходящие
разрабатываемого ПО	методов машинного	алгоритмы/архитектуры для решения
	обучения и	конкретных задач анализа данных,
	архитектур	проводить сравнительный анализ
	нейронных сетей для	различных методов машинного
	их практического	обучения, оценивать применимость
	применения в	алгоритмов к данным разных типов.
	задачах обработки и	Опыт разработки прототипов и
	анализа больших	экспериментальных реализаций
	данных в области	алгоритмов, а также исследования
	проектирования и	влияния гиперпараметров на качество
	производства	работы моделей машинного обучения.
	электронной	
	компонентной базы.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы. Изучается в 2 семестре 1 курса, (очная форма обучения).

Входные требования к дисциплине — необходимы компетенции в области базовой информатики и программирования, математического анализа и дискретной математики, а также теоретических основ вычислительных машин и систем. Для успешного освоения дисциплины студентам требуется владение методами работы с большими данными, знание принципов обработки табличных данных и основ машинного обучения. Опыт использования языка программирования Python и специализированных. Важными также являются знания основ цифровой схемотехники и методов проектирования интегральных схем. Для успешного усвоения дисциплины наиболее важной является дисциплина «Методы обработки и анализа больших данных», изучаемая на 3 курсе бакалавриата.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	Е Контактная работа					
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкос (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	2	4	144	16	16	-	76	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактн	ая работа		В	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
1. Методы обработки табличных данных в задачах автоматизации проектирования интегральных схем	4	4		24	Контроль самостоятельной работы к лекциям модуля 1 Контроль выполнения практикоориентированного задания Защита лабораторных работ

	Контакті	ная работа		K	
№ и наименование модуля	Лекции (часы)	Лекции (часы) Лабораторные работы (часы) Практические занятия (часы)		Самостоятельная работа	Формы текущего контроля
2. Применение методов распределенного хранения и обработки данных	8	8		28	Контроль самостоятельной работы к лекциям модуля 2 Контроль выполнения практико-ориентированного задания Защита лабораторных работ
3. Комплексный анализ данных. Диагностическая и предиктивная аналитика	2	4		16	Контроль самостоятельной работы к лекциям модуля 3 Контроль выполнения практико-ориентированного задания Защита лабораторных работ
4. Применение нейронных сетей для анализа и оптимизации данных в системах автоматизированног о проектирования	2	-	-	8	Контроль самостоятельной работы к лекциям модуля 4 Контроль выполнения практико-ориентированного задания

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1	2	Язык программирования Python и связанные модули. Рассматриваются особенности языка Python, его роль в научных и инженерных задачах. Изучаются основные конструкции языка, встроенные типы данных, обработка исключений, работа с файлами,

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
			списками и генераторами. Рассматриваются библиотеки, полезные при обработке данных (NumPy, Pandas, Matplotlib), а также основы объектно-ориентированного программирования. Лекция служит подготовкой к использованию Python для анализа данных в задачах автоматизации проектирования ИС.
			Типы больших данных, подготовка данных, метрики качества и
	2	2	В лекции рассматриваются типы данных, встречающиеся в задачах анализа и проектирования ИС: табличные, текстовые, звуковые, графические и видеоданные. Обсуждаются источники больших данных и принципы их обработки. Особое внимание уделяется этапам подготовки данных: кодирование категориальных признаков, работа с пропущенными значениями, нормализация. Также подробно разбираются метрики качества моделей (МАЕ, МЅЕ, Ассигасу, F1-score и др.) и методы валидации: кросс-валидация, разделение на обучающую и тестовую выборки. Лекция даёт фундамент для последующего изучения алгоритмов машинного обучения.
	3	2	GBM и другие методы для обработки табличных данных Лекция посвящена алгоритмам машинного обучения, применяемым к табличным данным в задачах проектирования ИС. Рассматриваются основные модели: деревья решений, случайный лес, метод опорных векторов, AdaBoost и Gradient Boosting. Объясняется принцип работы градиентного бустинга и его реализация в популярных библиотеках (XGBoost, LightGBM, CatBoost). Даются примеры настройки параметров моделей и оценки их качества. Особое внимание уделяется применению этих методов к инженерным данным и задачам классификации и регрессии в области САПР.
2	4	2	Введение в нейронные сети Лекция знакомит с основами нейронных сетей и их применением в задачах анализа данных при проектировании ИС. Обсуждается аналогия с биологическими нейронами, структура многослойного перцептрона, функции активации (sigmoid, ReLU), механизм обучения через обратное распространение ошибки и градиентный спуск. На практическом примере показано применение нейросети к задаче распознавания рукописных цифр. Лекция формирует фундаментальные представления о нейросетевых моделях и закладывает базу для перехода к более сложным архитектурам.
	5	2	Свёрточные нейронные сети для работы с изображениями Лекция посвящена свёрточным нейронным сетям и их применению в задачах

№ модуля лиспиплины	№ лекции	Объем занятий (часы)	Краткое содержание
			компьютерного зрения, связанных с проектированием ИС. Рассматриваются базовые архитектуры CNN (LeNet, AlexNet, VGG, ResNet), принципы работы слоёв свёртки, pooling и функций активации. Обсуждается процесс построения и обучения свёрточных сетей для классификации изображений. Особое внимание уделяется использованию предобученных моделей (transfer learning) и современных архитектур (EfficientNet). Приводятся примеры обработки изображений топологий микросхем.
	6	2	Работа с текстовыми данными. Лекция посвящена методам обработки текстовой информации и их применению в задачах анализа данных в инженерной области. Обсуждаются базовые представления текста, традиционные способы кодирования (One-Hot), а также современные подходы с использованием word embeddings (Word2Vec). Рассматриваются рекуррентные нейронные сети (LSTM, GRU) и их возможности для работы с последовательностями. Подробно разбираются архитектуры на основе self-attention (трансформеры) и принципы предобучения моделей (BERT). Лекция демонстрирует, как извлекать смысл из текста и использовать его для задач проектирования.
3	7	2	Работа со звуковыми данными. Задачи Object Detection и Segmentation для изображений Лекция знакомит с цифровым представлением звука и методами его анализа. Рассматриваются характеристики аудиосигналов (амплитуда, частота), способы дискретизации, битовая глубина и форматы хранения (WAV, MP3, FLAC). Изучаются спектральные методы анализа, включая преобразование Фурье, спектрограммы и мел-спектрограммы. Также обсуждаются задачи обработки звука и параллельно — задачи Object Detection и Segmentation на изображениях, с примерами использования нейросетевых моделей и датасетов. Лекция даёт практическое представление о работе с мультимодальными данными в задачах проектирования.
4	8	2	Реализация нейронных сетей на аппаратном уровне. Лекция посвящена вопросам эффективного выполнения нейронных сетей на аппаратных устройствах: СРU, GPU и TPU. Рассматриваются методы ускорения обучения, включая параллельные вычисления (MultiGPU, распределённые тренировки), режимы Half и Mixed Precision. Обсуждаются проблемы точности и устойчивости вычислений при использовании float16, а также способы их решения. Также разбираются техники оптимизации этапа инференса: квантование, sparsity, distillation и автоматический поиск архитектур (NAS). Лекция демонстрирует возможности аппаратного ускорения в задачах машинного обучения для САПР.

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные работы

№ модуля	дисциплины	№ лабораторной	Davor Bi	Ообем занятии	(часы)	Наименование работы									
						Обработка табличных данных									
						Лабораторная работа направлена на освоение базовых инструментов анализа									
						табличных данных с использованием библиотек NumPy и Pandas. Студенты									
						знакомятся с операциями индексирования, фильтрации, агрегации и визуализации данных, а также выполняют практические задания по обработке									
1		1	4	4		CSV-файлов. Вторая часть работы посвящена использованию языка SQL и									
						библиотеки sqlite3 для взаимодействия с базами данных: создание таблиц,									
						выполнение запросов, извлечение и изменение данных. Работа выполняется в									
						среде Jupyter Notebook и включает как теоретические пояснения, так и									
						интерактивные задания.									
						Параллельная обработка. Алгоритм Map-Reduce									
						В рамках лабораторной работы студенты знакомятся с концепцией									
						параллельных вычислений на языке Python с использованием функций тар,									
						reduce и модуля multiprocessing. Работа состоит из двух частей: интерактивной									
		2	4	4		сессии в Jupyter для изучения основных конструкций и консольной части, в									
						которой решается задача вычисления расстояния Левенштейна с									
															использованием многопроцессорной обработки. Основное внимание уделено
						разработке и оптимизации программ, использующих параллельное выполнение, а также решению задач повышенной сложности.									
						Комплексный анализ данных: от ЕДА до моделей									
2						Лабораторная работа направлена на практическое освоение полного цикла									
						анализа данных на примере реального набора данных о характеристиках и									
						ценах бриллиантов. Студенты пошагово выполняют загрузку, очистку и									
						подготовку данных, изучают описательные статистики и визуализации, строят									
		3	4	1		корреляционные матрицы. Работа включает применение алгоритмов									
						кластеризации (k-means), построение регрессионной модели, а также									
						обзорный анализ главных компонент (РСА). Особое внимание уделяется									
						интерпретации результатов и выявлению зависимостей между признаками.									
						Все задания выполняются в Jupyter Notebook с использованием Pandas,									
						Matplotlib и Seaborn.									
						Предсказание тепловой карты IR Drop-а на основе изображений.									
						Используя набор изображений, отражающих резистивную сетку питания									
3		4	4	4		цифровой схемы, удалённость элементов от источников напряжения и									
						потребление тока ячейками, необходимо создать модель свёрточной									
						нейронной сети для предсказания тепловой карты статического IR Drop-a. Примеры архитектур: Conv2D, MaxPooling, RELU, BatchNormalization.									
						примеры архитектур. Сопудр, махгооппу, КЕЦО, Ваксимогнандацов.									

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
		Освоение теоретического материала и подготовка к лабораторным работам по изучению среды разработки РуСharm и языка
		работам по изучению среды разработки РуCharm и языка программирования Руthon для задач обработки данных в САПР, включая
1	12	библиотеки pandas и networkx для анализа данных и графов.
1	12	Выполнение практико-ориентированного задания на основы работы с
		Руthon для решения задач автоматизированного проектирования и
		анализа данных цифровых схем.
		Освоение теоретического материала и подготовка к лабораторным
		работам по изучению необходимой литературы и методических
		указаний для выполнения лабораторных работ по применению
1, 2, 3	28	машинного обучения и нейронных сетей в проектировании
1, 2, 3	20	интегральных схем.
		Выполнение практико-ориентированного задания на теоретические
		аспекты, так и на практические рекомендации по использованию
		методов машинного обучения в САПР.
		Изучение, выполнение и контроль материалов для самостоятельной
	0.5	работы по темам лекций модулей 1, 2, 3 и 4 с акцентом на их
1, 2, 3, 4	36	применение в задачах автоматизации проектирования цифровых схем.
		Студенты должны проработать примеры и закрепить материал с
		использованием дополнительных источников.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (OPИOКС// URL: , http://orioks.miet.ru/):

- Сценарий по дисциплине
- Методические рекомендации по выполнению лабораторных работ
- Ссылки на литературу по всей дисциплине
- Варианты заданий для экзамена.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

1 Соловьев, Р. А. (Автор МИЭТ, ИППМ). Исследование методов повышения

- сбоеустойчивости аппаратных реализаций нейронных сетей / Р. А. Соловьев, Д. В. Тельпухов, И. А. Харитонов. Текст : электронный // ЭЛЕКТРОННАЯ ТЕХНИКА. Серия 3. МИКРОЭЛЕКТРОНИКА. Москва : Техносфера, 2019. № 2(174). С. 72-77. URL: https://elibrary.ru/item.asp?id=39151621 (дата обращения: 01.06.2023).
- 2 **Методы моделирования радиационно-индуцированных случайных сбоев** в **комбинационных схемах** на **схемотехническом** и **логическом уровне** / Д. В. Тельпухов, В. В. Надоленко, А. И. Деменева, Т. Д. Жукова. Текст : электронный // НАНОИНДУСТРИЯ. Москва : Техносфера, 2020. № S5-2(102) : Доклады конференции. С. 340-349. URL: https://www.elibrary.ru/item.asp?id=44727028 (дата обращения: 01.07.2021).
- 3 **Рутковская** Д. **Нейронные сети, генетические алгоритмы** и **нечеткие системы** : Пер.с польск. И.Д.Рудинского / Д. **Рутковская**, М. Пилиньский, Л. Рутковский. 2-е изд. Москва : Горячая линия-Телеком, 2013. 384 с. URL: https://e.lanbook.com/book/11843 (дата обращения: 10.12.2020). ISBN 978-5-9912-0320-3.
- 4 **Галушкин**, А. И. **Нейронные сети. Основы теории** / А. И. **Галушкин**. Москва : Горячая линия-Телеком, 2017. 496 с. URL: https://e.lanbook.com/book/111043 (дата обращения: 26.04.2023). ISBN 978-5-9912-0082-0. Текст : электронный.
- 5 **Обработка изображений с помощью OpenCV** / Г.Б. Гарсия, О.Д. Суарес, Х.Л.Э. Аранда [и др.]; Пер. с англ. А.А. Слинкина. М. : ДМК Пресс, 2016. 210 с. URL: https://e.lanbook.com/book/90116 (дата обращения: 08.12.2020). ISBN 978-5-97060-387-1
- 6 Циликов Н.С.Модель графовой нейронной сети для ранжирования веб-страниц / Н.С. Циликов, С.А. Федосин. ISBN 978-5-7256-0696-6 // Актуальные проблемы информатизации в науке, образовании и экономике 2012. 5-я Всероссийская межвузовская научно-практическая конференция. (Зеленоград, 17-19 октября 2012 г.). М.: МИЭТ, 2012. С. 129

Нормативная литература

Не требуется

Периодические издания

- 1 Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 . ISSN 1561 5405
- 2 IEEE TRANSACTIONSON COMPUTER AIDED DESIGN OFI NTERGRATED CIRCUITS & SYSTEMS. USA: IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43. Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1 IEEE/IET Electronic Library (IEL) [Электронный ресурс] = IEEE Xplore : Электронная библиотека. USA ; UK, 1998-. URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения : 10.01.2024). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта «Национальная подписка»
- 2 Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 10.01.2024). Режим доступа: для

- авторизированных пользователей МИЭТ
- 3 Юрайт : Электронно-библиотечная система : образовательная платформа. Москва, 2013 . URL: https://urait.ru/ (дата обращения : 10.01.2024); Режим доступа: для авторизированных пользователей МИЭТ.
- 4 eLIBRARY.RU : Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 10.01.2024). Режим доступа: для зарегистрированных пользователей

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации дисциплины используется смешанное обучение, в основе которого лежит интеграция технологий традиционного и электронного освоения компетенций, в частности за счет использования онлайн тестирования, взаимодействие со студентами в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, сервисы видеоконференцсвязи, социальные сети.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние электронные ресурсы** в формах тестирования в ОРИОКС и MOODLe.

При проведении занятий и для самостоятельной работы используются внешние электронные ресурсы в формах:

Coursera — Machine Learning by Stanford University

https://www.coursera.org/learn/machine-learning

Deep Learning Specialization by DeepLearning.AI

https://www.coursera.org/specializations/deep-learning

Elements of AI — Introduction to AI

https://www.elementsofai.com/

edX — Foundations of Data Science

https://www.edx.org/course/foundations-of-data-science

YouTube — Corey Schafer Python Tutorials

https://www.youtube.com/user/schafer5

YouTube — Sentdex Machine Learning & AI

https://www.youtube.com/user/sentdex

Kaggle — Datasets and Tutorials for Machine Learning

https://www.kaggle.com/

GitHub — Repository for Machine Learning Projects

https://github.com/topics/machine-learning

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Компьютер с мультимедийным	Win pro ot 7,
	оборудованием	Microsoft Office Professional
		Plus или Open Office, браузер
		(Firefox, Google Crome);
		Acrobat reader DC
Лаборатория	Компьютерная техника с	PyCharm
	возможностью подключения к	Python 3.x
	сети «Интернет» и обеспечением	pandas, NumPy, scikit-learn
	доступа в электронную	TensorFlow или PyTorch
	информационно-	Matplotlib или Seaborn
	образовательную среду МИЭТ.	networkx
		Jupyter Notebook
		SPICE/NG-Spice
Помещение для	Компьютерная техника с	Операционная
самостоятельной работы	возможностью подключения к	система Microsoft Windows
	сети «Интернет» и обеспечением	Microsoft Office
	доступа в электронную	браузер
	информационно-	Acrobat reader DC
	образовательную среду МИЭТ	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по компетенции/подкомпетенции:

ПК-4. ОММОИИ Способен применять методы машинного обучения и искусственного интеллекта в задачах автоматизации проектирования интегральных схем

ПК-6. ОММОИИ Способен проводить исследование и анализ алгоритмической составляющей методов машинного обучения и архитектур нейронных сетей для их практического применения в задачах обработки и анализа больших данных в области проектирования и производства электронной компонентной базы.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Студенты должны самостоятельно изучать материал, представленный в каждом модуле дисциплины, с применением предложенной учебной литературы и ресурсов. Каждый модуль включает в себя теоретический и практический компонент, который позволяет студентам лучше освоить методы машинного обучения и нейронных сетей в контексте автоматизированного проектирования интегральных схем (САПР).

Материал дисциплины представлен четырьмя модулями.

В первом модуле рассматриваются основы машинного обучения и его применение в задачах автоматизации проектирования цифровых схем, методы обработки табличных данных и их использование в САПР.

Во втором модуле уделяется внимание нейронным сетям различных архитектур для анализа данных в проектировании интегральных схем.

Третий модуль посвящён методам работы с нейронными сетями для генерации и преобразования данных в САПР.

Четвёртый модуль изучает спайковые нейронные сети и аппаратную реализацию нейронных сетей в нейроморфных и цифровых схемах.

Защита лабораторной работы проходит в виде публичной демонстрации выполненного задания. Студент должен продемонстрировать как теоретическое понимание, так и практическую реализацию задачи, поставленной в лабораторной работе. Защита состоит из краткого отчёта по проделанной работе, ответов на вопросы преподавателя и демонстрации работоспособности созданной модели или алгоритма.

Для закрепления полученных знаний и в качестве практической составляющей подготовки, студентам необходимо выполнить самостоятельные индивидуальные работы, тесно связанные с тематикой лабораторных работ. Самостоятельные работы могут проходить как в аудиториях для самостоятельной подготовки, так и дома. Эти работы включают в себя разработку и тестирование моделей для задач САПР, анализ и интерпретацию результатов, а также написание отчётов. Самостоятельные работы выполняются каждым студентом индивидуально, без помощи преподавателя.

Критерием оценки самостоятельных работ является качество разработанных моделей, корректность их работы, полнота анализа результатов, а также умение студента аргументировать и объяснить принятые решения.

Полученные на лекциях и лабораторных работах знания активно применяются студентами при выполнении индивидуальных заданий, а также при написании выпускных квалификационных работ. Опыт, приобретённый в процессе выполнения лабораторных работ, будет полезен при работе в профессиональной сфере проектирования цифровых и нейроморфных систем.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 80 баллов) и сдача экзамена (20 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИКИ:

Профессор Института ИнЭл, д.т.н.

Пепь /Д.В. Тельпухов/

Рабочая программа дисциплины «Основы методов машинного обучения искусственного интеллекта» по направлению подготовки 09.04.01 «Информатика и вычислительная техника», направленность (профиль) «Лингвистические средства САПР сверхбольших интегральных схем и систем на кристалле» разработана в Институте ИнЭл и утверждена на заседании Ученого совета Института ИнЭл 06.09 2024 года, протокол № 1 /В.В. Лосев/ Директор Института ИнЭл ЛИСТ СОГЛАСОВАНИЯ Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества /И.М. Никулина / Начальник АНОК Рабочая программа согласована с библиотекой МИЭТ _/Т.П. Филиппова/

Директор библиотеки