Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александро Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Образования Тосение высшего образования Тосение высшего образования Дата подписания: 01.07.2025 11:02:40

Уникальный программный ключ: «Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355 «Мфсковский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

ложинория 2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физика и химия полупроводников»

Направление подготовки - 22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) - «Технологии материалов микроэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующей компетенции образовательной программы:

Компетенция ПК-3 «Способен прогнозировать влияние микро- и нано- масштаба на механические, физические, химические и другие свойства веществ и материалов» **сформулирована на основе профессионального стандарта** 40.104 «Специалист по измерению параметров и модификации свойств наноматериалов и наноструктур».

Обобщенная трудовая функция 40.104 С [6]Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур.

Трудовая функция 40.104 С/01.6Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур.

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-	Совершенствование	Знание: статистики носителей заряда
3.ФХППСпособен	процессов	полупроводников, а также методов ее
применять	измерений	применения для оценки свойств
фундаментальные	параметров и	полупроводников.
математические и	модификации	Умение: обоснованно выбирать и
естественно-научные	свойств	методы измерения и расчета
знания при анализе	наноматериалов и	электрофизических.
электрофизических	наноструктур.	характеристик полупроводников.
характеристик		Опыт деятельности:
полупроводников.		прогнозирования вклада
		поверхностных свойств в свойства
		дисперсных систем и учета этого
		вклада в технологии изготовления
		полупроводников.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине

Изучению дисциплины предшествует формирование компетенций в дисциплинах «Физика», «Химия», «Физическая химия», «Кристаллография», «Материалы электронной техники», «Методы исследования наноматериалов и структур».

Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются выполнением индивидуальных заданий практики и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	сть	Контан	ктная раб	ота		
Курс	Семестр	Общая трудоёмко (ЗЕ)	Общая трудоёмкост (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
4	8	4	144	24	12	24	84	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная рабо	та	K	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
1. Предмет курса. Общие представления о полупроводниках и основные определения.	2	2	2	8	Тестирование Защита лабораторной работы
2. Особенности характера химической связи и кристаллической структуры Si и Ge.	6	2	4	16	Тестирование Защита лабораторной работы
3. Статистика носителей заряда в собственных полупроводниках.	12	2	14	30	Тестирование Защита лабораторной работы
4. Состояние атомов легирующих элементов в решетке германия и кремния. Мелкие акцепторы и доноры.	10	4	10	24	Тестирование Защита индивидуального задания

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание	
1	1	2	Предмет курса. Общие представления о полупроводниках и основные определения.	
			Строение изолированных атомов и структура энергетических уровней в	
2	2	2	изолированных атомах Si и Ge.	
2	3	2	Структура материалов. Дальний и ближний порядок. Кристаллы.	
	4	2	Химическая связь в кристаллах Si и Ge. sp ³ -гибридизация.	
			Строение кристаллической решетки Si и Ge.	
	5	2	Уравнение Шредингера для кристаллов. Приближения, необходимые для решения уравнения Шредингера. Решение уравнения Шредингера.	
	6	2	Понятие об эффективной массе. Анализ решения уравнения Шредингера.	
3	7	2	Структура энергетических зон в Si и Ge. Прямозонные и непрямозонные полупроводники. Температурная зависимость ширины запрещенной зоны.	
	8	2	Плотность состояний и энергия Ферми свободного электронного газа. Функция распределения Ферми-Дирака и ее свойства. Критерий вырождения. Концентрация электронов и дырок в разрешенных зонах полупроводников.	
	9 2		Уровень Ферми в собственном полупроводнике. Закон действующих масс для носителей заряда в полупроводнике. Термодинамическая трактовка уровня Ферми.	
	10	2	Примеси в полупроводниках. Энергия ионизации примесей. Рекомбинационные ловушки и центры захвата. Водородоподобное приближение и метод эффективных масс при определении энергии мелких примесных уровней. Критерий образования примесной зоны.	
4	11	2	Уравнение электронейтральности для легированного полупроводника. Фактор вырождения примесных состояний. Степень заполнения примесных уровней.	
	12	2	Температурные зависимости положения уровня Ферми и концентрации электронов в донорном полупроводнике. Температурная область истощения примесных уровней.	

4.2. Практические занятия

т.г. практи секие запятия			
— № модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
1	1	2	Полупроводниковое состояние вещества.
2	2	2	Строение изолированных атомов и структура энергетических уровней в изолированных атомах Si и Ge.
2	3	2	Химическая связь в кристаллах Si и Ge. sp ³ -гибридизация. Строение кристаллической решетки Si и Ge.
	4	2	Решение уравнения Шредингера.
	5	2	Структура энергетических зон в Si и Ge. Прямозонные и непрямозонные полупроводники.
3 7	6	2	Некристаллические полупроводники. Атомная структура и модели структуры энергетических зон. Механизмы переноса носителей заряда в a-Si:H.
	7	2	Определение плотности электронных состояний в некристаллических полупроводниках. Уровень Ферми в полупроводниках. Статистика электронов в полупроводниках.
	8	2	Уравнение электронейтральности. Определение распределения электронов и дырок по примесным состояниям. Температурные зависимости уровня Ферми и концентрации носителей в легированных полупроводниках.
	9	2	Сложнолегированные полупроводники. Определение положения уровня Ферми в сложнолегированных полупроводниках.
4	10	2	Квазихимический подход к процессу ионизации доноров и акцепторов в полупроводнике. Сложное легирование. Электронно-дырочное взаимодействие. Равновесие дефектов в полупроводниковом кристалле.
	11	2	Комплексообразование в решетке элементарного полупроводника.
	12	2	Модель образования электронейтрального комплекса.

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1	4	Исследование структурно-релаксационных процессов в тонких пленках
			некристаллических полупроводников с помощью дифференциальной
			сканирующей калориметрии.
2	2	4	Исследование термоЭДС тонкопленочных материалов.

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
3	3	4	Исследование термических свойств материалов, применяемых
			для создания ячеек фазовой памяти.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1-4	28	Изучение теоретического материала в объеме лекций
1-4	20	Подготовка к лабораторной работе
1-4	8	Подготовка к тестированию по модулям
1-4	22	Выполнение индивидуального задания по анализу процессов измерений
		параметров и модификации свойств наноматериалов и наноструктур.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модуль 1 «Предмет курса. Общие представления о полупроводниках и основные определения»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к лабораторным работам, подготовка к опросам по модулям осуществляется с помощью лекций к модулю №1, материалов для самостоятельной работы студентов.

Модуль 2 «Особенности характера химической связи и кристаллической структуры Si и Ge»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к опросам по модулям осуществляется с помощью лекций к модулю №2, лабораторного практикума, материалов для самостоятельной работы студентов.

Модуль 3 «Статистика носителей заряда в собственных полупроводниках»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к лабораторным работам, подготовка к опросам по модулям осуществляется с помощью лекций к модулю №3, лабораторного практикума, материалов для самостоятельной работы студентов.

Модуль 4 «Состояние атомов легирующих элементов в решетке германия и кремния. Мелкие акцепторы и доноры»

✓ Изучение теоретического материала в объеме лекций, подготовка к практическим занятиям, подготовка к опросам по модулям осуществляется с помощью лекций к модулю №4, лабораторного практикума, материалов для самостоятельной работы студентов.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Шалимова К.В. Физика полупроводников : Учебник / К.В. Шалимова. 4-е изд., стер. СПб. : Лань, 2010. 400 с.
- 2. Бурбаева Н.В. Основы полупроводниковой электроники : Учеб. пособие / Н.В. Бурбаева, Т.С. Днепровская. М. : Физматлит, 2012. 312 с. URL: https://e.lanbook.com/book/5261 (дата обращения: 17.12.2020). ISBN 978-5-9221-1379-3.
- 3. Парменов Ю.А. Физика полупроводников : Учеб. пособие / Ю.А. Парменов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". 2-е изд., доп. и испр. М. : МИЭТ, 2017. 136 с.
- 4. Старосельский В.И. Физика полупроводниковых приборов микроэлектроники : Учеб. пособие / В.И. Старосельский; Национальный исследовательский университет "МИЭТ"; [Под ред. Ю.А. Парменова]. М. : Юрайт, 2019. 463 с. (Бакалавр. Академический курс). URL: https://urait.ru/bcode/425163 (дата обращения: 30.11.2024). ISBN 978-5-9916-0808-4, 978-5-9692-0962-6
- 5. Материалы электронной техники : Лабораторный практикум: В 2-х ч. Ч. 1 / Б.Г. Будагян, А.А. Шерченков. М. : МИЭТ, 2001. 56 с.
- 6. Материалы электронной техники : Лабораторный практикум: В 3-х ч. Ч. 3 / А.А. Шерченков, Ю.И. Штерн. М. : МИЭТ, 2004. 88 с.
- 7. Горелик С.С. Материаловедение полупроводников и диэлектриков / С.С. Горелик, М.Я. Дашевский. М.: Металлургия, 1988. 574 с.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. **eLIBRARY.RU:** научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru(дата обращения: 11.11.2024). Режим доступа: для зарегистрир. пользователей.
- 2. **Российская государственная библиотека**: сайт. Москва, 1999-2020. URL: http://www.rsl.ru(дата обращения: 10.11.2024).
- 3. **GoogleScholar:** сайт. США, 2004 . -URLhttps://scholar.google.ru. (дата обращения: 10.11.2024). Режим доступа: свободный.

- 4. **База AmericanChemicalSociety (ACS):** Некоммерческое научное издательство. <u>Американское химическое общество, 2020.</u> – URL: http://pubs.acs.org(дата обращения: 11.11.2024). – Режим доступа: для авторизованных пользователей МИЭТ.
- 5. **Electrochemical Society**:Научное издательство IOP Publishing, 2020. URL: https://iopscience.iop.org/partner/ecs(дата обращения: 29.11.2024). Режим доступа: для авторизованных пользователей МИЭТ
- 6. **Springer**: сайт. URL: http://link.springer.com (дата обращения: 29.11.2024). Режим доступа: для авторизованных пользователей МИЭТ.
- 7. **SCOPUS:** Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.11.2024). Режим доступа: для авторизованных пользователей МИЭТ.
- 8. **Наукометрическая база данных WebofScience**: Сайт. Компания Clarivate, 2020. URL: http://apps.webofknowledge.com (дата обращения: 29.11.2024). Режим доступа: для авторизованных пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (основано на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория №	Компьютер, проекционная	OC Microsoft Windows,
4136	установка VIEWSONIC PRO-	MS Office
«Лаборатория	8500.	
микроскопии»		
Учебная аудитория №	Компьютеры с ПО и	OC Microsoft Windows,
43386	возможностью подключения к	MS Office, MatLab
«Лаборатория	сети Интернет	
неупорядоченных		
полупроводников»		

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Помещение для	Компьютерная техника с	OC Microsoft Windows,
самостоятельной работы	возможностью подключения к	MS Office, Браузер
обучающихся	сети «Интернет» и обеспечением	
	доступа в электронную	
	информационно-	
	образовательную среду МИЭТ	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-3.ФХПП** «Способен применять фундаментальные математические и естественно-научные знания при анализе электрофизических характеристик полупроводников».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1.Особенности организации процесса обучения

Дисциплина «Физика и химия полупроводников» состоит из четырех модулей. Модуль 1 дает студентам общие представления о полупроводниках, модуль 2 дает студентам сведения об особенностях характера химической связи и кристаллической структуры Si и Ge. В модуле 3 рассматривается статистика носителей заряда в собственных полупроводниках, в модуле 4 представлены сведения о состоянии атомов легирующих элементов в решетке германия и кремния.

Студенты должны осуществлять поиск дополнительной информации по темам практических занятий в научных источниках с последующим обсуждением результатов поиска с преподавателем и одногруппниками.

Приступать к лабораторным работам необходимо после изучения теоретического материала, рекомендованного преподавателем в рамках самостоятельной работы и изучения описания соответствующей лабораторной работы. Студенты получают допуск к лабораторной работе после ознакомления с описанием лабораторной работы. Для получения допуска необходимо правильно ответить на контрольные вопросы к теоретической части, приведенные в конце описания лабораторной работы.

Выполнение индивидуального задания на СРС предполагает формирование у обучающихся подкомпетенций по индикаторам умений и приобретения опыта

деятельности. Оно включает в себя изучение современных методов для исследований основных параметров функциональных материалов, используемых в энергосберегающих системах.

Контроль выполнения студентами индивидуального задания проводится на семинарах. Студенты выступают с докладом на семинаре, излагая содержание проделанной работы, анализируя различные аспекты освещаемой проблемы, происходит обсуждение информации в формате научной дискуссии.

Подготовкой материалов для промежуточной аттестации необходимо начать заниматься с первых дней семестра, не устраняться от активного участия в активных видах занятий.

Студентам рекомендуется активно посещать предусмотренные расписанием консультации с преподавателем.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система,

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре и промежуточный контроль (в сумме - 100 баллов).

Структура и график контрольных мероприятий приведены в журнале успеваемости на OPИOKC (http://orioks.miet.ru/).

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 – 69	3
70 – 85	4
86 – 100	5

РАЗРАБОТЧИКИ:

Профессор Института ПМТ, д.т.н., профессор_

/А.А.Шерченков /

Рабочая программа дисциплины «Физика и химия полупроводников» по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», направленности (профилю) «Технологии материалов микроэлектроники» разработана в Институте перспективных материалов и технологий и утверждена на заседании Ученого совета Института ПМТ 19 декабря 2024 года, протокол № 16

Директор Института ПМТ	/С.В.Дубков/
J	Іист согласования
Рабочая программа согласована с Пе	редовой инженерной школой
Директор ПИШ	/А.Л.Переверзев /
Рабочая программа согласована с I оценки качества	Центром подготовки к аккредитации и независимой
Начальник АНОК	/И.М.Никулина /
Рабочая программа согласована с биб	блиотекой МИЭТ
Директор библиотеки	/Т.П.Филиппова /