Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович Министерство науки и высшего образования Российской Федерации Должность: Ректор МИЭТ Федеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 23.08.2024 12:54:06

«Национальный исследовательский университет

Уникальный программный ключ: «Московский институт электронной техники» ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c8f8bea882b8d602

УТВЕРЖДАЮ

Проректор, по учебной работе

А.Г. Балашов

се соше 2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физика. Атомная физика. Строение вещества»

Направление подготовки 11.03.04 «Электроника и наноэлектроника» Направленность (профиль) - «Интегральная электроника и наноэлектроника»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенции	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций
ОПК-1. Способен	ОПК-1.ФизАФСВ	Знает фундаментальные законы
использовать поло-	Способен использовать	природы и основные физические
жения, законы и ме-	положения, законы и методы	законы атомной физики и строе-
тоды естественных	атомной физики и строения	ния вещества
наук и математики	вещества для решения задач	Умеет применять физические
для решения задач	инженерной деятельности	законы атомной физики и строе-
инженерной дея-		ния вещества для решения задач
тельности		теоретического и прикладного
		характера
		Имеет опыт использования зна-
		ний физики в области атомной
		физики и строения вещества при
		решении практических задач
ОПК-2. Способен	ОПК-2. ФизАФСВ	Знает способы оценки погреш-
самостоятельно	Способен самостоятельно про-	ности результатов измерений
проводить экспери-	водить экспериментальные ис-	физического эксперимента по
ментальные иссле-	следования и использовать ос-	атомной физике и строению ве-
дования и исполь-	новные приемы обработки и	щества
зовать основные	представления полученных дан-	Умеет выбирать способы и
приемы обработки	ных на основе навыков выпол-	средства измерений и проводить
и представления	нения физического эксперимен-	экспериментальные исследова-
полученных данных	та по атомной физике и строе-	ния на основе навыков выполне-
	нию вещества	ния физического эксперимента
		по атомной физике и строению
		вещества
		Имеет опыт обработки и пред-
		ставления полученных данных и
		оценки погрешности результа-
		тов измерений физического экс-
		перимента по атомной физике и
		строению вещества

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине: для освоения дисциплины необходимы знания по физике и математике в объеме требований ЕГЭ и знания, полученные при изучении физико-математических дисциплин предыдущих семестров обучения: электричество и магнетизм, оптика, математический анализ, дифференциальные уравнения.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		L	L	Конт	гактная ра	бота	Б1	н
Курс	Семестр	Общая трудоём кость (ЗЕ)	Общая трудоём- кость (часы)	Лекции (часы)	Практические занятия (часы)	Лабораторные занятия	Самостоятельна работа (часы)	Промежуточная аттестация
2	4	5	180	36	18	18	72	Экзамен (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	актная р	абота	ая	
№ и наименование модуля	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная	Формы текущего кон- троля
1 Элементы квантовой механики. 8		4	6	27	Защита лабораторных ра- бот Тестирование
2 Атомная физика.	14	8	4	27	Защита лабораторных работ Тестирование Рубежный контроль (тестирование) Контрольная работа №1
3 Строение вещества.	14	6	8	18	Защита лабораторных работ Тестирование Контрольная работа №2 Защита практикоориентированного задания

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1	2	Корпускулярно-волновой дуализм.
			Гипотеза де Бройля. Опыты Дэвисона - Джермера.
			Соотношение неопределенностей.
			Оценка энергии основного состояния атома водорода и энергии нуле-
	2.4		вых колебаний осциллятора.
	2-4	6	Уравнение Шредингера.
			Волновая функция и ее физический смысл. Плотность вероятности.
			Операторы в квантовой механике. Среднее значение физической ве-
			личины. Собственные функции и собственные значения.
			Уравнение Шредингера. Стационарные состояния. Спектр энергий. Частица в потенциальной яме с бесконечно высокими стенками. Тун-
			нельный эффект. Гармонический осциллятор.
			Операторы момента импульса и его проекции. Квантование момента
			импульса и его проекции. Сложение моментов в квантовой механике.
2	5	2	Атом водорода в квантовой механике.
		_	Уровни энергии и волновые функции электрона. Квантовые числа.
			Спектры щелочных металлов. Спин электрона.
	6-7	4	Многоэлектронные атомы. Магнитные свойства атома.
			Орбитальный и спиновый магнитные моменты электрона. Магнетон
			Бора.
			Опыт Штерна и Герлаха. Эффект Зеемана.
			Состояния электронов в атоме.
			Принцип Паули. Электронные оболочки. Периодическая система эле-
			ментов Менделеева.
			Рентгеновские спектры атомов. Закон Мозли.
	8	2	Молекулы.
			Химическая связь. Ионная и ковалентная связи. Зависимость потенци-
			альной энергии взаимодействия двух атомов от расстояния между ни-
			ми. Молекула водорода.
			Энергия двухатомной молекулы. Электронная, колебательная враща-
			тельная энергии молекулы.
	9-	4	Физика атомного ядра и элементарных частиц.
	10		Состав и характеристики атомных ядер. Ядерные силы. Свойства
			ядерных сил. Энергия связи ядер.
			Модели атомного ядра. Радиоактивность. Закон радиоактивного рас-
			пада. Ядерные реакции.

№ модуля	дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
		11	2	Виды взаимодействий. Классы элементарных частиц.
				Частицы и античастицы. Фундаментальные частицы и фундаменталь-
				ные взаимодействия.
3		12-	4	Элементы статистической физики.
		13		Микро- и макросостояния.
				Статистическое описание микросостояния макросистемы.
				Статистический смысл энтропии.
		14	2	Порядок и беспорядок в природе.
				Энтропия как количественная мера хаотичности.
				Принцип возрастания энтропии.
		15-	4	Явления переноса в газах.
		16		Средняя длина свободного пробега.
				Диффузия, вязкость и теплопроводность газов.
				Коэффициенты вязкости, диффузии и теплопроводности.
	•	17	2	Физическая картина мира.
				Особенности классической и неклассической физики.
				Основные достижения и проблемы субъядерной физики.
				Современные космологические представления.
		18	2	Обзорная лекция по дисциплине

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия	
1	1	2	Волновые свойства микрочастиц.	
	2	2	Одномерные задачи стационарного уравнения Шредингера.	
2	3	2	Свойства атомов. Спектры.	
	4	2	Магнитные свойства атомов.	
			Контрольная работа №1	
	5-6	4	Строение атомного ядра, элементарные частицы.	
3	7	2	Статистические распределения. Энтропия.	
	8	2	Явления переноса.	
	9	2	Контрольная работа №2	

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1	2	Тепловое излучение
	2	2	Волны де Бройля и дифракция электронов
	3	2	Эффект Комптона
	4	2	Опыт Франка – Герца
2			Определение постоянной Ридберга и энергетических уровней атома
			водорода
	5 2 Эффект Зеемана		Эффект Зеемана
	6 2 Изучение термоэлектронной эмиссии и определение работы выхода		
3	7 2 Определение удельного заряда электрона		
	8 2 Эффект Холла в полупроводниках		
	9	2	Итоговое занятие по лабораторному практикуму

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	12	Работа с учебной литературой: работа с конспектами лекций, учебниками
		и учебными пособиями.
	3	Работа с электронными модулями индивидуальной работы студентов
		(ЭМИРС): изучение материалов ЭМИРС, ответы на тестовые вопросы.
	6	Подготовка к лабораторным занятиям: подготовка конспекта лаборатор-
		ной работы, изучение теоретического материала, схемы эксперимента,
		метода обработка экспериментальных данных, подготовка ответов на
		контрольные вопросы.
	4	Выполнение домашних заданий для освоения тем практических занятий.
	2	Подготовка к контрольной работе 1
2	7	Работа с учебной литературой: работа с конспектами лекций, учебниками
		и учебными пособиями.
	3	Выполнение практико-ориентированного задания
	2	Работа с электронными модулями индивидуальной работы студентов
	4	Подготовка к лабораторным занятиям: подготовка конспекта лаборатор-
		ной работы, изучение теоретического материала, схемы эксперимента,
		метода обработка экспериментальных данных, подготовка ответов на
		контрольные вопросы.

№ модуля дисциплины	Объем занятий (часы)	Вид СРС	
	7	Выполнение домашних заданий для освоения тем практических занятий.	
	4	Подготовка к контрольной работе	
		Подготовка к рубежному контролю.	
3	4	Работа с учебной литературой: работа с конспектами лекций, учебниками	
		и учебными пособиями.	
	1	Выполнение практико-ориентированного задания	
	1	Работа с электронными модулями индивидуальной работы студентов	
		(ЭМИРС): изучение материалов ЭМИРС, ответы на тестовые вопросы.	
	6	Подготовка к лабораторным занятиям: подготовка конспекта лаборатор-	
		ной работы, изучение теоретического материала, схемы эксперимента,	
		метода обработка экспериментальных данных, подготовка ответов на	
		контрольные вопросы.	
	4	Выполнение домашних заданий для освоения тем практических занятий.	
	2	Подготовка к контрольной работе 2	

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, URL: http://orioks.miet.ru):

Модуль 1 «Элементы квантовой механики»

Материалы с кратким изложением лекционного курса для подготовки к практическим и лабораторным занятиям и экзамену:

Методическое пособие для практических занятий и подготовки к контрольным мероприятиям и экзамену:

Электронные модули индивидуальной работы студентов (ЭМИРС) для подготовки к практическим занятиям, контрольным мероприятиям и экзамену.

Модуль 2 «Атомная физика»

Материалы с кратким изложением лекционного курса для подготовки к практическим, лабораторным занятиям и экзамену:

Методическое пособие для практических занятий и подготовки к контрольным мероприятиям и экзамену:

Электронные модули индивидуальной работы студентов (ЭМИРС) для подготовки к практическим занятиям, контрольным мероприятиям и экзамену.

Модуль 3 «Строение вещества»

Материалы с кратким изложением лекционного курса для подготовки к практическим, лабораторным занятиям и экзамену:

Методическое пособие для практических занятий и подготовки к контрольным мероприятиям и экзамену:

Электронные модули индивидуальной работы студентов (ЭМИРС) для подготовки к практическим занятиям, контрольным мероприятиям и экзамену.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ Литература

- 1. Савельев И.В. Курс общей физики [Электронный ресурс] : В 5-ти т.: Учеб. пособие. Т. 5 : Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. 5-е изд. СПб. : Лань, 2011. 384 с. URL: https://e.lanbook.com/book/708 (дата обращения: 11.10.2023). ISBN 978-5-8114-1211-2.
- 2. Иродов И.Е. Квантовая физика. Основные законы. Учеб. пособие для вузов / И.Е. Иродов. 7-е изд. М.: Издательство "Лаборатория знаний" (ранее "БИНОМ. Лаборатория знаний"), 2017. 261 с. (Технический университет). URL: https://e.lanbook_ncom/book/94103 (дата обращения: 11.10.2023). ISBN 978-5-00101-492-8
- 3. Иродов И.Е. Задачи по общей физике [Электронный ресурс] : Учеб. пособие для вузов / И.Е. Иродов. 11-е изд., электронное. М. : Бином. Лаборатория знаний, 2017. 434 с. URL: https://e.lanbook.com/book/94101 (дата обращения: 11.10.2023). ISBN 978-5-00101-491-1.
- 4. Савельев И.В. Курс общей физики [Электронный ресурс] : В 5-ти т.: Учеб.пособие. Т. 3 : Молекулярная физика и термодинамика / И. В. Савельев. 5-е изд. СПб. : Лань, 2011. 224 с. . URL: https://e.lanbook.com/book/706 (дата обращения: 11.10.2023). ISBN 978-5-8114-1209-9.
- 5. Иродов И. Е. Физика макросистем. Основные законы (Электронный ресурс] : Учеб. пособие для вузов / И.Е. Иродов. 8-е изд., электронное. М. : Издательство "Лаборатория знаний" (ранее "БИНОМ. Лаборатория знаний"), 2020. 210 с. URL: https://e.lanbook.com/book/135536 (дата обращения: 11.10.2023). ISBN 978-5-00101-826-1
- 6. Сивухин Д.В. Общий курс физики [Электронный ресурс] : Учеб. пособие. Т. 5 : Атомная и ядерная физика / Д.В. Сивухин. 2-е изд., стер. электронное. М. : Физматлит, 2002. 784 с. URL: https://e.lanbook.com/book/2315 (дата обращения: 11.10.2023). ISBN 5-9221-0230-3.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОН-НЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 11.10.2023). Режим доступа: для авторизированных пользователей МИЭТ.
- 2. Hayкa.Club = Nauka.Club : образовательный портал. [б.м.] : Образовательный портал для школьников и студентов, 2018 . URL: https://nauka.club/ (дата обращения: 11.10.2023). Режим доступа: свободный. Текст: электронный.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, основанное на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий и самостоятельной работы студентов формами и видами взаимодействия преподавателей и обучающихся в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС. (URL: http://orioks.miet.ru)

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: разделы ОРИОКС «Домашние задания», «Новости», электронная почта, WtatsApp.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в формах: видеолекции, презентации.

Тестирование проводится в ОРИОКС (MOODLe).

При проведении занятий и для самостоятельной работы используются **внешние** электронные ресурсы в формах:

Для самостоятельной работы студентов используются внешние электронные ресурсы. Модуль 1.

«Корпускулярно волновой дуализм»: https://www.youtube.com/watch?v=Qnywl9mnI_M (дата обращения 11.10.2023)

«Основы квантовой механики»: https://www.youtube.com/watch?v=nFch2D1THGg (дата обращения 11.10.2023)

Модуль 2.

«Строение атома»: https://www.youtube.com/watch?v=P6QRiebuw50 (дата обращения 11.10.2023)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень про- граммного обес- печения
Учебная аудитория	Мультимедийное оборудование:	Академические ли-
(лекционные занятия)	Компьютер	цензии на ПО по
(ауд. 1202мм)	Моноблок Lenovo F0AM0092RK	проекту Azure Dev
	Проектор Panasonic PT-VW535N	Tools for Teaching
	Экран Mediavisor	(Microsoft)
	Экран рулонный настенный,	Microsoft Office
	телевизор Panasonic TX-85XR940	Kaspersky
	Телевизор LG 55UF771V	
	Радиосистема Shure BLX88E K3E	
	Микрофон GAL VM-175	
	Акустика JBL PRX700	
Учебная аудитория	Специального оснащения не требуется	ПО не требуется
(практические заня-		
тия)		
Лаборатория	Лабораторная установка «Эффект Зеема-	Академические ли-

Наименование учеб- ных аудиторий и помещений для са- мостоятельной ра- боты	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень про- граммного обес- печения
«Строения вещества-	на»	цензии на ПО по
1»	Лабораторная установка «Комптоновское	проекту Azure Dev
ауд. № 3330	рассеяние»	Tools for Teaching
	Лабораторная установка «Дифракция элек-	(Microsoft)
	тронов»	Office
	Лабораторная установка «Серия Бальмера»	
	Лабораторная установка «Удельный заряд	
	электрона»	
	Лабораторная установка «Эксперимент	
	Франка – Герца»	
	Лабораторная установка «Эффект Холла в	
	GE n-типа»	
	Лабораторный комплекс «Опыт Франка-	
	Герца»	
	Лабораторный комплекс «Тепловое излу-	
	чение»	
	Лабораторный комплекс « Изучение элек-	
	тронной термоэмиссии»	
	Персональный компьютер в комплекте	
	Принтер	
Помещение для само-	Компьютерная техника с возможностью	Azure
стоятельной работы	подключения к сети «Интернет» и обеспе-	Open Office,
обучающихся	чением доступа в ОРИОКС	браузер Mozilla
		Firefox или Google
		Chrome

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

- 1.ФОС по подкомпетенции ОПК-1.ФизАФСВ Способен использовать положения, законы и методы атомной физики и строения вещества для решения задач инженерной деятельности
- 2. ФОС по подкомпетенции ОПК-2. ФизАФСВ Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных на основе навыков выполнения физического эксперимента по атомной физике и строению вещества

Фонд оценочных средств представлен отдельными документами и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

Сформированность подкомпетенции ОПК 2 ФизАФСВ проверяется до промежуточной аттестации на последнем занятии лабораторного практикума.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Дисциплина изучается в течение одного семестра. Она включает:

- лекции -1 раз в неделю;
- практические занятия (семинары) 1 раз в 2 недели;
- лабораторные работы 2-х часовые занятия 1 раз в 2 недели;
- консультации 1 раз в неделю, которые проводятся лектором потока и преподавателями, ведущими практические занятия.

Посещение лекций, практических занятий и лабораторных работ является обязательным. Посещение консультаций необязательное, за исключением тех случаев, когда преподаватель персонально приглашает студента на консультацию.

Содержание дисциплины состоит из трех модулей, которые изучаются последовательно:

- элементы квантовой механики;
- атомная физика;
- строение вещества, физическая картина мира.

Каждый модуль является логически завершенной частью курса. Успешность освоения каждого модуля оценивается по результатам выполнения обязательных контрольных мероприятий.

Для организации учебной работы студентов в начале каждого семестра предоставляются следующие учебно-методические материалы:

- план лекций и практических занятий на семестр с указанием тем лекций со ссылками на параграфы или страницы учебников и учебных пособий, содержащих соответствующий материал, темы практических занятий и номера заданий из сборников задач для решения в аудитории или самостоятельно;
 - график выполнения лабораторных работ;
 - график и виды контрольных мероприятий;
 - список рекомендуемой учебно-методической литературы;
- рекомендуемые электронные ресурсы, включая «Электронные модули индивидуальной работы студентов» (ЭМИРС), размещенные в сети МИЭТ (http://orioks.miet.ru/oroks-miet/srs.shtml).
- практико-ориентированные задания на опыт деятельности, представление и защита результатов которого происходит на одном из практических занятий.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 26 баллов), рубежный контроль (до 5 баллов), выполнение каждой лабораторной работы (в сумме до 17,5 баллов), посещаемость занятий (в сумме до 8 баллов), активность в семестре (в сумме до 3,5 баллов) и итоговое мероприятие в форме экзамена (до 40 баллов).

По сумме баллов выставляется итоговая оценка по предмету.

Структура и график контрольных мероприятий приведены в журнале успеваемости на ОРИОКС// URL: http://orioks.miet.ru/).

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 - 69	3
70 – 85	4
86 – 100	5

Разработчик: Профессор кафедры общей физики, д.ф.-м.н. — — — /А.И. Попов/

Директор библиотеки

/Т.П. Филиппова /