Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшего образования Российской Федерации

Должность: Ректорфедеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 16.07.2024 12:44:57

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c8f8bea882b8d607

ТВЕРЖДАЮ роректор по учебной работе А.Г. Балашов 202 <u>Υ</u> г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Основы цифровой схемотехники»

Направление подготовки - 02.03.01 «Математика и компьютерные науки», Направленность (профиль)- «Компьютерная математика и анализ данных»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-4 «Способен осуществлять выбор платформ и инструментальных программно-аппаратных средств для реализации информационных, управляющих и вычислительных систем» сформулирована на основе профессионального стандарта 06.001 «Программист».

Обобщенная трудовая функция D (6) — Разработка требований и проектирования программного обеспечения

Трудовая функция D /01.6- «Анализ требований к программному обеспечению».

Подкомпетенции, формируемые в дисциплине	Задачи професси- ональной деятельности	Индикаторы достижения подкомпетенций
ПК-4.ОЦС Способен проектировать последовательностные и комбинационные узлы интегральных логических схем с использованием графического редактора схем	Проведение измерительных экспериментов и оформление результатов исследований при разработке информационно-управляющих систем	 Знания: методов аналитического синтеза элементов цифровой схемотехники (карты Карно, таблицы истинности, аналитическая минимизация ФАЛ). принципов функционирования базовых элементов цифровой схемотехники. Умения: проводить функциональное и временное моделирование последовательностных и комбинационных узлов цифровой аппаратуры. аналитически синтезировать последовательностные и комбинационные узлы цифровой аппаратуры. анализировать результат моделирования и верно его интерпретировать в соответствии с поставленной задачей. синтезировать элементы цифровых устройств в САПР Altera Quartus, Ковчег, Altera MAX+ с помощью графического редактора. Опыт в разработке последовательностных и комбинационных узлов ИС (комбинационные схемы, триггерные устройства, регистры, счетчики).

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине — необходимы компетенции в области математического анализа, дискретной математики, электротехники.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

	- 40.75	4		Конта	ктная раб)a-	-aI		
Kypc	Семестр	Общая трудоёмкос (3E)	Общая трудоёмкос (часы)	Лекции (часы)	Лабораторные ра- боты (часы)	Практические за- нятия (часы)	Самостоятельная р бота (часы)	Промежуточная ат	стация
3	5	4	144	32	16	16	8.0	3aO	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

№ и наименование модуля	Лекции (часы) реd		Практические за- нятия (часы)	Самостоятельная работа	Формы Текущего контроля
Модуль 1 Арифметические и логические основы ЭВМ	6	0	4	16	Тестирование. Проверка выполнения индивидуальных самостоятельных заданий
Модуль 2 Триггерные устройства	4	4	2	16	Тестирование. Проверка выполнения индивидуальных самостоятельных заданий
Модуль 3 Регистры	2	4	4	20	Тестирование. Проверка выполнения индивидуальных самостоятельных заданий
Модуль 4 Счётчики и пересчётные устройства	6	.4	4	16	Тестирование. Проверка выполнения индивидуальных самостоятельных заданий
Модуль 5 Комбинационные схемы	14	4	2	12	Тестирование. Проверка выполнения индивидуальных самостоятельных заданий

4.1. Лекционные занятия

	1		4.1. Лекционные занятия
№ модуля	инециплины № лекции	Объем занятия	Краткое содержание
1	1	2	Булева Алгебра. Аксиомы и законы. Формы представления функций алгебры логики. Карты Карно. Минимизация функций алгебры логики.
	2	2	Общие положения о триггерах. Определения. <i>RS</i> триггер. Синтез структур <i>RS</i> триггера в базисах И-НЕ и ИЛИ-НЕ. Законы функционирования. Характеристические таблицы. Временные диаграммы работы.
2	3	2	Разновидности <i>RS</i> триггеров. Синтез произвольных триггерных устройств. Синхронные триггеры. Универсальные синхронные <i>D</i> - и <i>JK</i> -триггеры. Алгоритм работы, временные диаграммы, характеристические таблицы. Синтез триггерных устройств на базе <i>D</i> - или <i>JK</i> - триггеров.
3	4	2	Регистры. Определения и классификация. Примеры схем, реализуемых на регистрах. Сдвиговые регистры. Синтез структур. Полные графы переходов сдвиговых регистров.
	5	2	Делители частоты, проектируемые на сдвиговых регистрах.
	6	2	Кольцевые счётчики. Универсальные регистры.
4	7	2	Счётчики и пересчётные устройства. Определения, классификация. Базовые структуры счётчиков. Счётчики с параллельным, сквозным, последовательным, групповым переносом.
4	8	2	Синтез асинхронных счётчиков и пересчётных устройств.
	9	2	Пересчётные устройства. Синтез пересчётных устройств с повторяющимися состояниями.
	10	2	Дешифраторы. Классификация и определение. Повышение разрядности дешифрируемого слова. Депифратор как многофункциональный узел.
	11	2	Шифраторы. Приоритетные шифраторы.
	12	2	Мультиплексоры. Уравнение мультиплексора. Увеличение разрядности.
	13	2	Мультиплексор как многофункциональный узел.
5	14	2	Компараторы. Цифровой медианный фильтр. Сдвигатели.
	15	2	Сумматоры. Определение, классификация и параметры. Виды однобитного сумматора. Накапливающие сумматоры. Увеличение разрядности суммируемых слов. Схема ускоренного переноса.
	16	2	Двоично-десятичные сумматоры в коде 8-4-2-1. Матричные комбинационные умножители.

4.2. Практические занятия

№ модуля	дисциплины	№ занятия	Объем занятий	Наименование и/или краткое содержание практических занятий
1		1	2	Аксиомы и законы Булевой алгебры.
				Поиск лишних импликант в функциях алгебры логики.
		2	2	Карты Карно. Эталонная и рабочая карты Карно. Минимизация функций алгебры логики с использованием карт Карно. Построение цифровых схем.
2	î	3	2	RS-триггер и его разновидности. Синтез триггерных устройств с использованием универсального синхронного D-триггера и универсального синхронного JK-триггера.
3		4	2	Синтез регистровых структур.
		5	2	Сдвиговые регистры, синтез делителей частоты.
4		6	2	Синтез синхронных счётчиков и пересчётных устройств.
		7	2	Синтез асинхронных счётчиков и пересчётных устройств.
5		8	2	Синтез пересчётных устройств с повторяющимися состояниями.

4.3. Лабораторные работы

№ модуля	дисциглины Уч <u>е</u> лаоораторнок	Объем занятий	Наименование работы	
2	1	4	Синтез и реализация произвольных ФАЛ.	
3	2	4	Триггерные устройства.	
4	3	4	Регистры.	
5	4	4	Счётчики и пересчётные устройства.	

4.4. Самостоятельная работа студентов

	дисциплины Объем занятий (часы)	Вид СРС
	4	Изучение рисков сбоя в комбинационных схемах.
1	4	Расчётно-графическая работа по булевой алгебре, поиску лишних импликант и минимизации функций алгебры логики.
į,	4	Выполнение индивидуальных самостоятельных заданий по тематике прак-

		тических работ
	4	Подготовка к итоговому контролю.
	4	Самостоятельная работа по подготовке к лабораторной работе по триггерным устройствам.
2	4	Расчётно-графическая работа по синтезу триггерных устройств.
2	4	Выполнение индивидуальных самостоятельных заданий по тематике практических работ
	4	Подготовка к итоговому контролю.
	4	Самостоятельная работа по подготовке к лабораторной работе по разделу Регистры.
	4	Расчётно-графическая работа по синтезу разряда параллельного регистра.
3	4	Расчётно-графическая работа по синтезу делителя частоты на базе сдвигового регистра.
	4	Выполнение индивидуальных самостоятельных заданий по тематике практических работ
	4	Подготовка к итоговому контролю.
	4	Самостоятельная работа по подготовке к лабораторной работе по теме Счётчики и пересчётные устройства.
4	4	Расчётно-графические работа по синтезу синхронных счётчиков.
4	4	Выполнение индивидуальных самостоятельных заданий по тематике практических работ
	4	Подготовка к итоговому контролю.
	4	Расчётно-графическая работа (домашнее задание) по синтезу комбинационных схем.
5	4	Выполнение индивидуальных самостоятельных заданий по тематике практических работ
	4	Подготовка к итоговому контролю.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС: https://orioks.miet.ru/):

- ✓ Методические рекомендации по выполнению лабораторных работ
- ✓ Ссылки на литературу по всей дисциплине.
- ✓ Образовательная технология ко всей дисциплине

Модуль 1 «Арифметические и логические основы ЭВМ»:

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2019/10/0100 ALO - Prezentatsiya.pdf http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2019/10/0200 Logicheskie ventili - Prezentatsiya.pdf

Модуль 2 «Триггерные устройства»:

http://emirs.miet.ru/oroks-

miet/upload/ftp/pub/orioks3/2019/10/0401 Obschie polojeniya o triggerah - Prezentatsiya.pdf

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2019/10/0410 RS-trigger -

Prezentatsiya.pdf

Модуль 3 «Регистры»:

http://emirs.miet.ru/oroks-

miet/upload/ftp/pub/orioks3/2019/10/0800 Sdvigovyie registryi. Polnyie grafyi perehodov - Prezentatsiya.pdf

http://emirs.miet.ru/oroks-

miet/upload/ftp/pub/orioks3/2019/10/0900 Sintez deliteley chastotyi - Prezentatsiya.pdf Модуль 4 «Счётчики и пересчётные устройства»:

http://emirs.miet.ru/oroks-

miet/upload/ftp/pub/orioks3/2019/10/1300_Schëtchiki i PU. Osnovnyie ponyatiya - Prezentatsiya.pdf

http://emirs.miet.ru/oroks-

miet/upload/ftp/pub/orioks3/2019/10/1350 Sintez sinhronnyih schëtchikov - Prezentatsiya.pdf

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Воробьев Н.В. Схемотехника ЭВМ: Учеб. пособие. Ч. 1: Комбинационные узлы / Н.В. Воробьев, А.Н. Якунин; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ). М.: МИЭТ, 2009. 160 с.
- 2. Воробьев Н.В. Схемотехника ЭВМ: Учеб. пособие. Ч. 2: Последовательностные узлы / Н.В. Воробьев, А.Н. Якунин; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ). М.: МИЭТ, 2009. 284 с.
- 3. Якунин А.Н. Схемотехника ЭВМ: Лабораторный практикум / А.Н. Якунин; М-во образования и науки РФ МГИЭТ(ТУ); Под ред. Н.В. Воробьева. М.: МИЭТ, 2010. 132 с.
- 4. Муханин, Л. Г. Схемотехника измерительных устройств: учебное пособие / Л. Г. Муханин. 4-е изд., стер. М.: Лань, 2019. 284. URL: https://e.lanbook.com/book/111201 (дата обращения: 26.02.2021). ISBN 978-5-8114-0843-6
- 5. Травин, Г. А. Основы схемотехники телекоммуникационных устройств: учебное пособие / Г. А. Травин. СПб.: Лань, 2018. 216. (Учебники для вузов. Специальная литература). URL: https://e.lanbook.com/book/101849 (дата обращения: 16.03.2021). ISBN 978-5-8114-2771-0: 0-00. Текст: электронный.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. IEEE/IET Electronic Library (IEL) [Электронный ресурс] = IEEE Xplore : Электронная библиотека. USA ; UK, 1998-. URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения : 28.10.2020). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта «Национальная подписка»
- 2. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 28.10.2020). Режим доступа: для авторизированных пользователей МИЭТ
- 3. Юрайт: Электронно-библиотечная система: образовательная платформа. Москва, 2013 . URL: https://urait.ru/ (дата обращения: 05.11.2020); Режим доступа: для авторизированных пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации дисциплины используется смешанное обучение, в основе которого лежит интеграция технологий традиционного и электронного освоения компетенций, в частности за счёт использования таких инструментов как видео-лекции, онлайн тестирование, взаимодействие со студентами в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, сервисы видеоконференцсвязи и социальные сети.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в формах тестирования в ОРИОКС

При проведении занятий и для самостоятельной работы используются внешние электронные ресурсы в формах электронных компонентов видео-сервисов:

Плейлист, содержащий десятки видео-файлов: лекции, методические указания по решению задач и выполнению лабораторных работ и др.: https://www.youtube.com/playlist?list=PLH2Iy8E7thrUHrqt2nGMqa8oXb sFNTCv

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащённость учебных аудиторий и помещений для самостоятельной работы	Перечень программного обес- печения
Учебная аудитория	Компьютер с мультимедийным оборудованием	Win pro от 7, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Crome); Acrobat reader DC
Лаборатория прото- типирования и те- стирования ИУС	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в ОРИОКС.	Программное обеспечение: Intel Quartus Prime Lite Edition, САПР Ковчег.
Помещение для са- мостоятельной ра- боты	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду МИЭТ	Win pro от 7, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Crome); Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ ФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-4.ОЦС «Способен проектировать последовательностные и комбинационные узлы интегральных логических схем с использованием графического редактора схем».

Фонд оценочных средств представлен отдельным документом и размещён в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС https://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Все модули могут быть изучены как логически-законченные темы с собственными индивидуальными заданиями на семинарах и лабораторных работах.

На практических занятиях широко используются интерактивные методы обучения. Каждый студент по каждой теме получает индивидуальное задание, которое он должен решить к следующему занятию (расчётно-графическая работа).

Семинар, проходящий в диалоговом режиме позволяет студенту приобрести необходимые знания и навыки, которые помогут ему при решении расчётно-графической работы. На каждом практическом занятии студенты выступают у доски, совместно со своими одногруппниками и преподавателям, пытаясь найти методику решения задач, на примере аналогичного задания. Так как задачи имеют типовой характер, это гарантирует повышенное внимание к выступающему коллеге.

Каждое индивидуальное задание проверяется преподавателем на правильность и полноту выполнения и оценивается по пятибалльной шкале. Полученные оценки влияют на текущую успеваемость, проставляемую преподавателями в ведомости. На основе получаемых оценок составляется рейтинг успеваемости студентов, который влияет на итоговую оценку освоения дисциплины. Данная методика проведения практических занятий преследует следующие цели:

- организация самостоятельной работы студентов;
- стремление студентов к качественному освоению изучаемого материала с целью повышения своего рейтинга;
- формирование учебной автономности студента, его ответственности за процесс и результаты обучения;
- создание условий, при которых студенты самостоятельно приобретают новые знания из разных источников,
- научить пользоваться приобретёнными знаниями для решения познавательных и практических задач;
- переход от преимущественной активности преподавателя к активности учащихся;
- приобретение коммуникативных умений, работая в группах,
- развить у студентов исследовательские умения (умения выявления проблем, сбора информации, наблюдения, проведения эксперимента, анализа, построения гипотез, обобщения и др.),
- научить самостоятельно оценивать ход и результат учебного процесса.

Для закрепления полученных знаний и в качестве практической составляющей подготовки студентов, ими выполняются самостоятельные индивидуальные работы по тематике лабораторных работ. Самостоятельные работы могут проходить как аудиторно (в аудитории для самостоятельной подготовки), так и дома. Самостоятельные работы включают в себя использование практических навыков при расчете данных, полученных на лабораторных работах, но без помощи преподавателя и выполняются каждым студентом индивидуально.

По завершении обучения проводится представление результатов выполнения самостоятельного задания, оно может проводиться как на семинарских или лабораторных работах так и дистанционно (путем общения с преподавателем по средствам электронной связи с преподавателем)

Критерием оценки самостоятельных работ является совокупность данных, реализованных и продемонстрированных в каждом конкретном случае.

Полученные знания на лекциях, на лабораторных работах, а также на семинарских занятиях используются студентами при выполнении индивидуального задания, а также при написании выпускных квалификационных работ. Опыт, полученный студентами при выполнении лабораторных работ, несомненно, пригодится при работе по специальности.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 100 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в ОРИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:	
Профессор Института МПСУ, д.т.н.	 /А.Н. Якунин/

Рабочая программа дисциплины «Основы цифровой схемотехники» по направлению подготовки - 02.03.01 «Математика и компьютерные науки» направленность (профиль)-«Компьютерная математика и анализ данных» разработана в Институте МПСУ и утверждена на заседании УС Института МПСУ Вебрим 2021/года, протокол № 6/м.

Директор Института МПСУ

/А.Л. Переверзев/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с н	выпускающей кафедрой В	M-1
-----------------------------------	------------------------	-----

Заведующий кафедрой ВМ-1

/ А.А. Прокофьев/

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

_/И.М. Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

My

/Т.П. Филиппова /