Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшег ф образования Российской Федерации

Должность: Ректор МИЭТ Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 15.46.56

Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f73**kdУfo8ковоновай**винотигут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

10 » 000 900 p2020r

MI

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Технология приборостроения»

Направление подготовки –27.03.04 «Управление в технических системах» Направленность (профиль) – «Технические средства автоматизации и управления»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-3 «Способен проводить анализ, расчет и внедрение систем и средств автоматизации технологических процессов механосборочного производства» сформулирована на основе профессионального стандарта 28.03 «Специалист по автоматизации и механизации механосборочного производства».

Обобщенная трудовая функция В6 «Автоматизация и механизация технологических процессов и производств».

Трудовая функция ВВ/02.6 «Внедрение средств автоматизации и механизации технологических процессов механосборочного производства».

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций Знает понятия, принципы и методы
ПК-3.ТОП Способен ориентироваться в технологии приборостроения, выбирать методы и оборудование для изготовления деталей и узлов систем управления	Разработка и применение критериев оценки надежности компонентов средств автоматизации и механизации, технологических процессов с целью анализа соответствия уровню развития техники и технологии	построения технологических процессов изготовления изделий в условиях серийного производства, обеспечивающие требуемые производительность, точность, экономическую эффективность и безопасность Умеет определить тип производства, выбрать и обосновать метод получения заготовки, разработать технологический маршрут изготовления детали и выбрать оборудование для его реализации Имеет опыт в определении стоимости получения заготовки, разработке технологических операций, выборе режущих инструментов, расчете режимов резания, оформлении технологической документации

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемая участниками образовательных отношений Блока 1 «Дисциплины (модули)».

Входные требования к дисциплине - знание основ высшей математики, физики, инженерной и компьютерной графики; умение применять знания разделов высшей

математики, физики, инженерной и компьютерной графики для решения стандартных профессиональных задач в области средств автоматизации и управления.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		Tb	Tb	K	Сонтактна	я работа		
Курс	Семестр	Общая трудоёмкос (ЗЕТ)	Общая трудоёмкос (часов)	Лекции (часы)	Лабораторные работы (часы)	Практическая подготовка при проведении практических занятий (часы)	Самостоятельная работа(часы)	Промежуточная аттестация
4	7	4	144	32	-	16	96	ЗаО, КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	К	онтакті	ная работа			
№ и наименование модуля	ы ва Пекции (часы) Лабораторные работы (часы) Практическая подготовка при проведении практических занятий (часы)		Самостоятельная работа (часы)	Формы текущего контроля		
М1. Основные положения	6	-	-	12	Теоретический опрос	
М2. Технологические свойства конструкционных материалов	6	1	2	12	Тестирование №1 по модулю №2	
М3. Технологические процессы изготовления деталей	12	1	10	16	Тестирование №2 по модулю №3	
М4. Технологические процессы сборки и монтажа систем управления	8	1	4	16	Рубежный контроль	
M1 – M4	-	-	-	40	Выполнение и защита курсового проекта	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
M1	1	2	Задачи и место дисциплины ТПС в подготовке специалиста. Основные понятия и определения дисциплины

	2	2	Параметры качества технологических процессов				
	3 2		Типы производств и особенности построения технологических				
			процессов				
	4	2	Классификация и маркировка конструкционных материалов				
M2	5	2	Технологические свойства конструкционных материалов				
	6	2	Основные технологические процессы получения заготовок				
			Основные методы формообразования поверхностей деталей.				
	7	2	Общие вопросы обработки резанием. Инструментальные				
			материалы				
			Технологические процессы обработки деталей резанием.				
	8	2	Токарная и фрезерная обработка. Обработка на сверлильных и				
			расточных станках				
M3	9	2	Технологические процессы обработки деталей резанием.				
			Абразивная и отделочная обработка				
	10	2	Технологические процессы изготовления деталей из				
	10		неметаллических материалов				
	11	2	Электрофизические и электрохимические методы размерной				
			обработки материалов				
	12	2	Защита деталей от воздействия внешней среды				
	13	2	Технологические процессы механической сборки				
	14	2	Основные методы обеспечения точности сборочных процессов				
M4	15	2	Основные методы изготовления печатных плат				
	16	2	Технологические процессы сборки и монтажа функциональной				
	10	<i>L</i>	ячейки				

4.2. Практические занятия

Д № Модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание	
M2	1	2	Технологический анализ конструкционного материала	
	2	2 2	Содержание курсового проекта. Анализ детали на	
	L		технологичность	
	3	3 2	Выбор и обоснование способа получения заготовки. Отливки,	
M3	3		поковки, стандартные профили	
1013	4	2	Выбор методов обработки отдельных поверхностей детали	
	5	2	Разработка маршрутной технологии обработки детали. Выбор	
	7		оборудования	
	6	2	Разработка технологических операций и технологических эскизов	
	7	2	Расчет и назначение режимов резания	
M4	8	2	Разработка технологического процесса сборки и монтажа	
	G	<i>_</i>	функциональной ячейки	

4.3. Лабораторные работы

Не предусмотрены

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
3.61	10	Текущая проработка теоретического материала (изучение учебного
M1	12	материала по конспектам лекций, литературным источникам и
		составление конспекта, развернутого плана).
M2	12	Подготовка к тестированию №1 по модулю №2.
M3	16	Подготовка к тестированию №2 по модулю №3.
M4	16	Подготовка к рубежному контролю
M1-M4	40	Выполнение и защита курсового проекта

4.5. Примерная тематика курсовых работ (проектов)

- 1. Разработка технологического процесса изготовления детали в условиях серийного производства.
- 2. Разработка технологического процесса сборки и монтажа функциональной ячейки.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: http://orioks.miet.ru/):

- Методические указания студентам по изучению курса;
- Методические указания студентам по выполнению курсового проекта.

Модуль 1. Основные положения.

- 1. Теоретический материал по модулю 1.
- 2. Методические указания для СРС по модулю 1.
- 3. Список литературы.

Методическими материалами для подготовки к устному опросу служат конспекты лекций:

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/9/Lektsiya1._Vvedenie_v_te hnologiyu.docx.

Модуль 2. Технологические свойства конструкционных материалов.

- 1. Теоретический материал по модулю 2.
- 2. Методические указания для СРС по модулю 2.
- 3. Список литературы.

Методическими материалами для подготовки к тестовому контролю и практическим занятиям служит литература [2], материалы, размещенные в ОРИОКС:

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/10/Konstruktsionnyie_materialyi. Svoystva, klassifikatsiya i markirovka.docx;

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/10/Prilojenie.Klassifikatsiya i markirovka KM.docx;

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2019/5/Metodika_vyipolneniya_P OZ TOP.docx.

Модуль 3. Технологические процессы изготовления деталей.

- 1. Теоретический материал по модулю 3.
- 2. Методические указания для СРС по модулю 3.
- 3. Список литературы.

Методическими материалами для подготовки к тестовому контролю, практическим занятиям и лабораторным работам служит литература [2,3], материалы, размещенные в ОРИОКС:

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/10/Lektsiya_3._Liteynoe_proizvodstvo.docx;

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/10/Lektsiya_4._Obrabotka_metallov_davleniem.docx;

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/11/Lektsiya_5._Rezanie._To karnaya obrabotka.docx;

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/11/Lektsiya_6._Frezerovanie, sverlenie, abrazivnaya i otdelochnaya obrabotka.docx;

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2020/12/Lektsiya_7._Pererabotka nemetallicheskih materialov.docx;

https://orioks.miet.ru/storage/d/553772/0c73f66739c4ebc4f5d70592efdc1f6feccee531/% D0%9B%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%208.%20%D0%AD%D0%A4%D0 %AD%D0%A5.%20%D0%97%D0%B0%D1%89%D0%B8%D1%82%D0%B0%20%D0%BE %D1%82%20%D0%BA%D0%BE%D1%80%D1%80%D0%BE%D0%B7%D0%B8%D0%B8. docx.

Модуль 4. Технологические процессы сборки и монтажа САУ.

- 1. Теоретический материал по модулю 4.
- 2. Методические указания для СРС по модулю 4.
- 3. Список литературы.

Методическими материалами для подготовки к рубежному контролю, выполнению курсового проекта служат конспекты лекций, материалы практических занятий, материалы, размещенные в ОРИОКС:

http://emirs.miet.ru/oroks-miet/upload/ftp/pub/orioks3/2019/5/Metodika_vyipolneniya_P OZ TOP.docx.

Методическими материалами для выполнения разделов курсового проекта по теме модуля служит литература [2], электронные ресурсы:

http://www.enginer.bmstu.ru/res/RL6/book1/book/index.htm;http://www.enginer.bmstu.ru/res/RL6/book2/book/index.htm;http://de.ifmo.ru/bk_netra/start.php?bn=38.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Конструкторско-технологическое проектирование электронной аппаратуры : Учеб. для вузов / К.И. Билибин, А.И. Власов, Л.В. Журавлев, и др.; Под ред. В.А. Шахнова. М. : МГТУ им. Н.Э. Баумана, 2002. 527 с. (Информатика в техническом университете). ISBN 5-7038-1765-X.
- 2. Вяльцев А.А. Лабораторный практикум по курсу "Технология приборов и машин" / А.А. Вяльцев, И.М. Чечерников; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ); Под ред. А.А. Вяльцева. М.: МИЭТ, 2009. 108 с.
- 3. Вяльцев А.А. Разработка технологического процесса механизированной сборки и монтажа пайкой функциональной ячейки на печатной плате. Методические указания для курсового и дипломного проектирования. М.: МГИЭТ(ТУ), 1993.
- 4. Грановский В.Г. Методические указания для курсового проектирования по курсу «Технология приборостроения», Часть 1. М.: МИЭТ, 1986.
- 5. Грановский В.Г., Долгов В.В., Привалов В.П. Методические указания для курсового проектирования по курсу «Технология приборостроения», Часть 2. М.: МИЭТ, 1987.
- 6. Грановский В.Г. Методические указания для курсового проектирования по курсу «Технология приборостроения», Часть 3. М.: МИЭТ, 1987.
- 7. Вяльцев А.А. Разработка технологического процесса ручной сборки и монтажа пайкой функциональной ячейки на печатной плате. Методические указания для курсового проектирования по курсу «Технология приборостроения». МИЭТ. М., 1991.

Нормативная литература

1. ГОСТ 7.32-2017 СИБИД. Отчет о научно-исследовательской работе. Структура и правила оформления (с Поправками) = System of standards on information, librarianship and publishing. The research report. Structure and rules of presentation : Межгосударственный стандарт : Введ. 01.07.2018. - Москва : Стандартинформ, 2018. - [л.]. - URL: http://docs.cntd.ru/document/1200157208 (дата обращения: 24.06.2020). - Текст : электронный.

Периодические издания

- 1. ВЕСТНИК МГТУ ИМ. Н.Э. БАУМАНА. СЕРИЯ: ПРИБОРОСТРОЕНИЕ: научно-теоретический и прикладной журнал / ФГБОУ ВО "Московский государственный технический университет им. Н.Э. Баумана (национальный исследовательский университет)". Москва: МГТУ им. Н.Э. Баумана, 1990 . URL: http://vestnikprib.ru/ (дата обращения: 14.07.2020). Режим доступа: свободный. ISSN 0236-3933 (Print); 2687-0614 (Online). Текст: электронный: непосредственный.
- 2. ПРОЕКТИРОВАНИЕ И ТЕХНОЛОГИЯ ЭЛЕКТРОННЫХ СРЕДСТВ : научно-технический журнал / ФГБОУ ВПО "Владимирский государственный университет им. А.Г. и Н.Г. Столетовых". Владимир : ВлГУ, 2001 . URL: https://www.elibrary.ru/title_about.asp?id=9013 (дата обращения: 08.07.2020). Режим доступа: для зарегистрированных пользователей. ISSN 2071-9809. Текст : непосредственный : электронный.

- 3. ТЕХНОЛОГИЯ И КОНСТРУИРОВАНИЕ В ЭЛЕКТРОННОЙ АППАРАТУРЕ: научно-технический журнал / Ин-т физики и полупроводников им. В.Е. Лашкарева, НПП Сатурн, Одесский национальный политехнический ун-т. Одесса: Политехпериодика, 1976 . URL: http://www.tkea.com.ua/tkea/new.html (дата обращения: 30.06.2020). Режим доступа: свободный (на украинском, английском и русском языках). ISSN 2225-5818 (Print); 2309-9992 (Online). Текст: электронный: непосредственный.
- 4. ПРИБОРЫ И СИСТЕМЫ. УПРАВЛЕНИЕ, КОНТРОЛЬ, ДИАГНОСТИКА: научно-технический и производственный журнал / Издательство "Hayчтехлитиздат". Москва: Научтехлитиздат, 2001 . URL: http://elibrary.ru/contents.asp?titleid=7953 (дата обращения: 23.06.2020). Режим доступа: по подписке (2015-2020). ISSN 2073-0004. Текст: электронный: непосредственный.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Электронный фонд правовой и нормативно технической документации: сайт / AO «Кодекс» Москва, 2020 URL: http://docs.cntd.ru/ (дата обращения 07.06.2020).
- 2. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 28.06.2020). Режим доступа: для авторизированных пользователей МИЭТ.
- 3. Российское образование. Федеральный портал: сайт. Москва, 2002 . URL: http://www.edu.ru/ (дата обращения: 07.07.2020).
- 4. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 30.10.2020). Режим доступа: для зарегистрированных пользователей.
- 5. IEEE/IET Electronic Library (IEL) = IEEE Xplore : Электронная библиотека. USA; UK, 1998 . URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения : 28.10.2020). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка". Текст : электронный.
- 6. РУКОНТ: Национальный цифровой ресурс: Электронно-библиотечная система: сайт. Москва: Сколково, 2010 URL: https://lib.rucont.ru/search (дата обращения: 07.09.2020). Режим доступа: для авториз. пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

При проведении практических занятий студенты не только закрепляют знания, полученные на лекциях, но и получают навыки решать стандартные профессиональные задачи проектирования технологических процессов, изготовления типовых элементов конструкций систем и средств автоматизации и управления.

Освоение образовательной программы обеспечивается ресурсами, размещенными в электронной информационно-образовательной среде OPИOKC http://orioks.miet.ru.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя, Zoom и др.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы (http://orioks.miet.ru): электронные версии лекций, практических занятий, методических разработок по тематике курса.

Дисциплина может быть реализована в дистанционном формате. При дистанционном обучении проводятся лекции и практические занятия в режиме видеоконференции Zoom. Вся информация доступна для студентов через среду ОРИОКС.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных	Оснащенность учебных	
аудиторий и помещений для	аудиторий и помещений для	Перечень программного обеспечения
самостоятельной работы	самостоятельной работы	
		Операционная система Microsoft
		Windows от 7 версии и выше,
Учебная аудитория	Мультимедийное оборудование	Microsoft Office Professional Plus или
		Open Office, браузер (Firefox, Google
		Chrome), Acrobat reader DC.
	Компьютерная техника с	
	возможностью подключения к	Операционная система Microsoft
Помещение для	сети «Интернет» и	Windows от 7 версии и выше,
самостоятельной работы	обеспечением доступа в	Microsoft Office Professional Plus или
	электронную информационно-	Open Office, браузер (Firefox, Google Chrome), Acrobat reader DC.
	образовательную среду МИЭТ	emonie, ricioan radici Be.

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-3.ТОП Способен ориентироваться в технологии приборостроения, выбирать методы и оборудование для изготовления деталей и узлов систем управления.

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Для формирования подкомпетенции и приобретения необходимых знаний, умений и опыта деятельности в рамках данного курса читаются лекции, проводятся практические занятия, выполняется курсовой проект.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к практическим занятиям, а также выполнению тестов. При этом студент использует методические разработки, рекомендуемую литературу, библиотеку электронных модулей в электронной информационной образовательной среде ОРИОКС, Интернет-ресурсы, информационно-справочные системы.

Максимальная эффективность освоения материалов *лекций* достигается при посещении студентом лекционных занятий с последующим повторением пройденного материала.

Для закрепления лекционного материала и выполнения курсового проекта проводятся *практические* занятия. На занятиях разбирается последовательность выполнения разделов курсового проекта, выбор метода получения заготовки, разработка маршрутной технологии, выбор оборудования и расчет режимов резания.

Одной из форм обучения является *консультация* у преподавателя. Обращаться к помощи преподавателя следует в любом случае, когда студенту не ясно изложение какоголибо вопроса в учебной литературе или требуется помощь в подборе необходимой дополнительной литературы.

Курсовой проект. В начале учебного семестра каждому студенту выдается задание на курсовой проект — чертеж детали средней сложности и сборочный чертеж со спецификацией на электронный модуль. Тематика проекта охватывает модули 1-4 и имеет проблемный и профессионально ориентированный характер, требующей самостоятельной творческой работы студента с различными источниками информации. По мере прохождения теоретического материала на практических занятиях рассматриваются примеры разработки технологических процессов, и студент выполняет и сдает преподавателю на индивидуальных консультациях части курсового проекта, отражающие отдельные этапы работы:

- 1. Анализ технологичности детали.
- 2. Выбор и обоснование метода получения заготовки.
- 3. Выбор методов обработки отдельных поверхностей детали и построение технологического маршрута.
 - 4. Разработка технологических операций.
 - 5. Разработка технологических эскизов обработки детали.
 - 6. Анализ технологичности электронного модуля.
 - 7. Разработка технологического процесса сборки и монтажа электронного модуля.
 - 8. Разработка технологических эскизов сборки и монтажа модуля.

Студенты при выполнении заданий работают индивидуально. Качество проекта (его структура, полнота, новизна, количество используемых источников, самостоятельность при выполнении, степень оригинальности и инновационности предложенных решений, обобщений и выводов), а также уровень последовательность, убедительность) (акцентированность, учитывается при промежуточной аттестации по дисциплине.

По завершению изучения дисциплины предусмотрен зачёт с оценкой, при этом оценка итогов учебной деятельности студента основана на балльной накопительной системе. Для сдачи зачёта с оценкой по дисциплине разработан ФОС, включающий тестовые задания и расчётное задание по проверке сформированности компетенции с методическими указаниями его выполнения и критериями оценки достижения формируемой в дисциплине подкомпетенции.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Текущий контроль достигнутого уровня сформированности компетенций осуществляется в виде оценки:

- активности и посещаемости лекционных занятий (в сумме до 16 баллов);
- прохождения контрольного тестирования №1 и №2 (по 6 баллов (минимальная) и 12 баллов (максимальная) оценка за успешное прохождение каждого тестирования, в сумме до 24 баллов);
- прохождения электронного рубежного контроля (11 баллов (минимальная) и 20 баллов (максимальная) оценка за успешное прохождение тестирования);
 - зачета по курсу (в сумме до 40 баллов).

Выполнение курсового проекта оценивается отдельно (расчетно-графические работы по этапам выполнения (в сумме до 70 баллов) и защита проекта (в сумме до 30 баллов)).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен студенту в ОРИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИКИ:

Доцент Института ПМТ, к.т.н.

И.М. Чечерников

Рабочая программа дисциплины «Технология приборостр	оения» по направлению
подготовки 27.03.04 «Управление в технических системах», наг	гравленности (профилю)
«Технические средства автоматизации и управления» разработа	на в Институте ПМТ и
утверждена на заседании УС Института ПМТ « <u>М</u> » <u>бексоф</u> ! № 42.	202 <u>@</u> года, протокол
J1 <u>2</u>	
Директор Института ПМТ	С.А. Гаврилов
ЛИСТ СОГЛАСОВАНИЯ	
Рабочая программа согласована с Институтом МПСУ	
Директор Института МПСУ	А.Л. Переверзев
Рабочая программа согласована с Центром подготовки к аккредит оценки качества	ации и независимой
Начальник АНОК	И.М. Никулина
Рабочая программа согласована с библиотекой МИЭТ	
Директор библиотеки	Т.П. Филиппова