Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Алексампинистерство науки и высшего образования Российской Федерации

Должность: Ректар МИЭТ — Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 15:20:17

Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354fxМожовский инсиитуr электронной техники»

УТВЕРЖДАЮ

Проректор по У

И.Г. Игнатова

20 20

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Проектирование на программируемых логических интегральных схемах»

Направление подготовки11.03.04- «Электроника и наноэлектроника» Направленность (профиль)- «Автоматизация проектирования изделий наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-3 «Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования» **сформулирована на основе профессионального стандарта 40.040** «Инженер в области разработки цифровых библиотек стандартных ячеек и сложно-функциональных блоков»

Обобщенная трудовая функция: С - «Разработка поведенческих описаний моделей стандартных ячеек, разработка технической документации на состав библиотеки стандартных ячеек»

Трудовая функция: С/02.6 - «Функционально-логическое моделирование стандартных ячеек библиотеки, проверка соответствия функционирования поведенческих моделей и электрических схем стандартных ячеек библиотеки»

Подкомпетенции, формируемые в	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
дисциплине	П	2
ПК-3.ППЛИС	Проектирование и	<i>Знания</i> принципов
Способен выполнять	сопровождение	конструирования устройств на
проектирование	интегральных схем, систем	ПЛИС
устройств на ПЛИС	на кристалле на системном,	<i>Умения</i> проектировать
в соответствии с	функциональном,	устройств на ПЛИС
техническим	логическом и физическом	Опыт проектирования устройств
заданием с	уровнях описания	на ПЛИС в соответствии с
использованием		техническим заданием с
средств		использованием средств
автоматизации		автоматизации проектирования
проектирования		

Компетенция ПК-4 «Способен применять углубленные знания в области маршрута проектирования приборов, схем, устройств и установок электроники и наноэлектроники» **сформулирована на основе профессионального стандарта40.040** «Инженер в области разработки цифровых библиотек стандартных ячеек и сложно-функциональных блоков»

Обобщенная трудовая функция: С - «Разработка поведенческих описаний моделей стандартных ячеек, разработка технической документации на состав библиотеки стандартных ячеек»

Трудовая функция: С/01.6 - «Поведенческое описание и тестирование моделей стандартных ячеек библиотеки»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-4.ППЛИС	Проектирование и	<i>Знания</i> принципов
Способен применять	сопровождение	конструирования устройств на
углубленные знания	интегральных схем, систем	ПЛИС
в области маршрута	на кристалле на системном,	<i>Умения</i> проектирования
проектирования	функциональном,	устройств на ПЛИС
схем и устройств с	логическом и физическом	Опыт проектирования устройств
памятью на ПЛИС	уровнях описания	на ПЛИС в соответствии с
		техническим заданием с
		использованием средств
		автоматизации проектирования

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы (дисциплина по выбору), изучается на 4курсе, в 8семестре (очная форма обучения).

Изучение дисциплины базируется на следующих ранее изучаемых дисциплинах: интегральная схемотехника, лингвистические средства САПР, модели и методы проектных решений, автоматизация функционально-логического проектирования, автоматизация конструкторско-топологического проектирования. Для успешного усвоения дисциплины наиболее важными являются следующие разделы этих дисциплин: булева алгебра (интегральная схемотехника), проектирование цифровых схем на языке Verilog (лингвистические средства САПР), поведенческое описание и тестирование логических моделей цифровых схем (маршруты автоматизированного проектирования интегральных схем).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Кон	тактная ра	ы	В	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
4	8	4	144	16	32	-	96	ЗаО, КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная р	абота	ая		
№ и наименование модуля	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа	Формы текущего контроля	
1. Проектирование на ПЛИС на поведенческом уровне	4	-	8	16	Защита лабораторных работ.	
2. Проектирование на ПЛИС на структурном уровне	4	-	8	32	Защита лабораторных работ.	
3. Архитектура ПЛИС	8	-	16	44	Подготовка и защита лабораторных работ. Защита курсового проекта	
1-3	-	-	-	4	Сдача практико- ориентированного задания	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание		
			Общие сведения о ПЛИС.		
	1	2	Особенности и преимущества проектирования на ПЛИС.		
			История развития ПЛИС. Классификация ПЛИС.		
1	2	2	Основные принципы проектирования на ПЛИС. Маршрут проектирования на ПЛИС. Проектирование систем на кристалле на основе ПЛИС. Проектирование на ПЛИС комбинационных и последовательных устройств, конечных автоматов. Проектирование элементов памяти, иерархическое проектирование в базисе ПЛИС.		
2	3	2	Архитектура ПЛИС Altera Cyclone II. Логический элемент и массив логических элементов ПЛИС Altera Cyclone II. Блочная память. Аппаратный умножитель. Трассировочные ресурсы. Цепи синхронизации Altera Cyclone II. Блоки ввода-вывода.		
	4	2	Введение в САПР Quartus II. Запуск Quartus II и создание проекта. Управление установками проекта. Управление файлами логического проекта. Редактирование временных		

			ограничений. Работа с ІР-блоками. Описание работы схемы, компиляция					
			проекта. Назначение входных и выходных портов ПЛИС. Моделирование					
			работы схемы. Конфигурирование ПЛИС.					
			Отладочная плата Cyclone II.					
	_	2	Устройство отладочной платы FPGA Starter Development Board. Режимы					
	5	2	конфигурирования ПЛИС. Таблицы соответствия выводов ПЛИС					
			контактам платы.					
	6		Современные тенденции развития ПЛИС.					
		2	Обзор ПЛИС зарубежных производителей. Обзор ПЛИС отечественных					
3			производителей. Тенденции развития ПЛИС.					
	7	2	Архитектура ПЛИС CPLD.					
	,	2	Архитектура ПЛИС Xilinx XC 9500. Архитектура ПЛИС Xilinx XPLA 3.					
			Архитектура ПЛИС Xilinx Virtex.					
	8	2	Конфигурируемый логический блок ПЛИС Xilinx Virtex. Блочная память.					
	0		Трассировочные ресурсы. Цепи синхронизации ПЛИС Xilinx Virtex. Блоки					
			ввода-вывода.					

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1,2	8	Освоение маршрута проектирования схем в базисе логических примитивов.
2	3,4	8	Освоение маршрута проектирования комбинационных и последовательных схем средствами языка Verilog. Реализация различных способов описания алгоритмов функционирования типовых схем.
3	5,6	8	Освоение технологии проектирования сложных комбинационных схем с использование аппаратных отладочных плат Altera Starter Development Board.
3	7,8	8	Освоение технологии проектирования последовательных схем с использование аппаратных отладочных плат Altera Starter Development Board.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	8	Обзор литературы с целью изучения существующих схемотехнических решений.
1	5	Подготовка к лабораторной работе: работа с учебными пособиями, материалами ЭМИРС, ресурсами Интернет.
	8	Обзор литературы с целью изучения существующих схемотехнических решений, изучение конструкций языка Verilog, методов описания работы схем на поведенческом уровне.
2	8	Подготовка к лабораторной работе: работа с учебными пособиями, материалами ЭМИРС, ресурсами Интернет.
	12	Получение и анализ задания на курсовую работу. Согласование с руководителем общих принципов построения и тестирования ПЛИС, разрабатываемой в рамках курсового проекта.
	14	Обзор литературы с целью изучения существующих схемотехнических решений. Подготовка реферата.
3	8	Подготовка к лабораторной работе: работа с учебными пособиями, материалами ЭМИРС, ресурсами Интернет.
	24	Разработка поведенческой модели и структурной схемы ПЛИС, которую нужно разработать в рамках курсового проекта. Подготовка временной диаграммы работы ПЛИС, комплексное моделирование проекта ПЛИС. Оформление и сдача курсовой работы.
1,2,3	4	Выполнение практико-ориентированного задания
1,2,3	5	Подготовка к зачёту с оценкой

4.5. Примерная тематика курсовых работ (проектов)

- 1. Разработка прямых и рекурсивных двоично-десятичных счетчиков и устройств на их основе.
- 2. Разработка параллельных сумматоров и вычитателей.
- 3. Разработка последовательных и накапливающих сумматоров и вычитателей.
- 4. Разработка схем умножителей и делителей.
- 5. Разработка схем двоично-десятичной арифметики.
- 6. Разработка схем, реализующих управляющие устройства на базе автоматов Мили и Мура.
- 7. Разработка схем шинных приёмопередатчиков.
- 8. Разработка схем дешифраторов клавиатуры.
- 9. Разработка схем обработки сигналов радаров.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Проектирование на программируемых логических интегральных схемах»: https://orioks.miet.ru/prepare/irscience?id science=2079811

Модуль 1 «Проектирование на ПЛИС на структурном уровне»

Методические материалы по выполнению заданий для самостоятельной работы по тематике модуля 1содержатся в разделе «Самостоятельная работа студентов» УМК дисциплины, размещенном на информационном ресурсе http://orioks.miet.ru/

Материалы для освоения теоретического материала содержания лекций, самостоятельного освоения тем содержатся в ЭМИРС- http://emirs.miet.ru/oroks-miet/в рамках подготовки к рубежному контролю.

Материалы для подготовки к выполнению лабораторных работ содержатся в электронном ресурсе «Лабораторный практикум по «Проектирование на программируемых логических интегральных схемах. Модуль 1», размещенном на информационном ресурсе http://orioks.miet.ru/.

Модуль 2 «Проектирование на ПЛИС на поведенческом уровне»

Методические материалы по выполнению заданий для самостоятельной работы по тематике модуля 2 содержатся в разделе «Самостоятельная работа студентов» УМК дисциплины, размещенном на информационном ресурсе http://orioks.miet.ru/

Материалы для освоения теоретического материала содержания лекций, самостоятельного освоения тем содержатся в ЭМИРС- http://emirs.miet.ru/oroks-miet/) в рамках подготовки к лабораторным работам.

Материалы для выполнения заданий курсового проектирования содержатся в рекомендациях по дисциплине «Проектирование на программируемых логических интегральных схемах», размещенном на информационном ресурсе http://orioks.miet.ru/.

Материалы для подготовки к выполнению лабораторных работ содержатся в электронном ресурсе «Лабораторный практикум по «Проектирование на программируемых логических интегральных схемах. Модуль 2», размещенном на информационном ресурсе http://orioks.miet.ru/.

Модуль 3 «Архитектура ПЛИС»

Методические материалы по выполнению заданий для самостоятельной работы по тематике модуля 3 содержатся в разделе «Самостоятельная работа студентов» УМК дисциплины, размещенном на информационном ресурсе http://orioks.miet.ru/

Материалы для освоения теоретического материала содержания лекций, самостоятельного освоения тем содержатся в ЭМИРС- http://emirs.miet.ru/oroks-miet/.

Материалы для выполнения заданий курсового проектирования содержатся в рекомендациях по дисциплине «Проектирование на программируемых логических интегральных схемах», размещенном на информационном ресурсе http://orioks.miet.ru/.

Материалы для подготовки к выполнению лабораторных работ содержатся в электронном ресурсе «Лабораторный практикум по «Проектирование на программируемых логических

интегральных схемах Модуль 3», размещенном на информационном ресурсе http://orioks.miet.ru/.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Основная литература

- 1) Беляев А.А. Проектирование на программируемых логических интегральных схемах: Учеб.пособие / А.А. Беляев, А.К. Мельник, И.Ю. Гридин; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2020. 120 с. ISBN 978-5-7256-0935-6
- 2) Гусев В.Г. Электроника и микропроцессорная техника (для бакалавров) : Учеб.пособие / В.Г. Гусев. М. :Кнорус, 2018. URL: https://www.book.ru/book/926521 (дата обращения: 01.09.2019). ISBN 978-5-406-06106-0
- 3) Моделирование микропроцессорных систем на базе программируемых логических интегральных схем с использованием Verilog HDL и САПР Quartus II : Учеб.пособие по курсу "Микропроцессорные средства и системы" / Д.Н. Беклемишев, А.Н. Орлов, М.Г. Попов, А.А. Кудров; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. А.Л. Переверзева. М. : МИЭТ, 2014. 100 с. ISBN 978-5-7256-0760-4
- 4) Заиналабедин Наваби. Проектирование встраиваемых систем на ПЛИС / Заиналабедин Наваби ; Пер. с англ. В.В. Соловьева. М. : ДМК Пресс, 2016. 464 с. URL: https://e.lanbook.com/book/73058 (дата обращения: 02.12.2020). ISBN 978-5-97060-174-7

Дополнительная литература

- 1) Бутов А.С. Учебно-методическое пособие по выполнению лабораторных работ по курсу "Проектирование на ПЛИС" : Учеб.пособие / А.С. Бутов, И.А. Медведев, А.К. Мельник; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2016. 100 с.
- 2) Грушвицкий Р.И. Проектирование систем на микросхемах с программируемой структурой / Р.И. Грушвицкий, А.Х. Мурсаев, Е.П. Угрюмов. 2-е изд., перераб. и доп. СПб. : БХВ-Петербург, 2006. 736 с. ISBN 5-94157-657-9
- 3) Угрюмов Е.П. Цифровая схемотехника : Учеб. пособие / Е.П. Угрюмов. 2-е изд., перераб. и доп. СПб. : БХВ-Петербург, 2005. 800 с. ISBN 5-94157-397-9
- 4) Максфилд К. Проектирование на ПЛИС. Курс молодого бойца : Архитектура, средства и методы / К. Максфилд. М. : ДОДЭКА-ХХІ, 2010. 407 с. (Программируемые системы). URL: https://e.lanbook.com/book/60987 (дата обращения: 15.12.2020). ISBN 978-5-94120-147-1
- 5) Уэйкерли Д.Ф. Проектирование цифровых устройств: Пер. с англ. Т.1 / М. :Постмаркет, 2002. 544 с.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2019). Режим доступа: для зарегистрир. пользователей
- 2. Электронно-библиотечная система Лань : сайт. Санкт-Петербург, 2011 . URL: https://e.lanbook.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 3. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 4. IEEE/IET ElectronicLibrary (IEL) = IEEE Xplore : электронная библиотека. USA ; UK, 1998 . URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения: 28.10.2020). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, применяется модель смешанного обучения «расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях (лекциях и лабораторных работах) с последующим самостоятельным выполнением индивидуального задания (индивидуальные задания к лабораторным работам и задание на опыт деятельности).

Обучение может реализовываться с применением дистанционных образовательных технологий.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем могут использоваться сервисы обратной связи, такие как электронная почта, социальная сеть ВКонтакте, система видеоконференций Zoom.

При проведении занятий и для самостоятельной работы используются **внутренние** электронные ресурсы в формах материалов в системе OPИOKC: URL: https://orioks.miet.ru/

При проведении занятий и для самостоятельной работы используются **внешние** электронные ресурсы в виде доступа к видео лекциям и заданиям для СРС

- 1. ЭБС издательства Лань http://e.lanbook.com/
- 2. http://ru.wikipedia.org определения, теоремы, исторические сведения
- 3. http://techlibrary.ru книги по математике, физике и другим дисциплинам
- 4. http://altera.com- сайтфирмы Altera
- 5. http://xilins.com сайт фирмы Xilins

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное	Microsoft (Azure),
	оборудование	Microsoft Office
Вычислительный класс	ПЭВМ Intel LGA1156 Core i5-	Microsoft (Azure)
4131.	661 с мониторами Ilyama и	Intel Quartus Prime
	ViewSonic.	LibreOffice
	Лабораторный практикум	
	Cyclone1.	
Помещение для	Компьютерная техника с	Microsoft (Azure),
самостоятельной работы	возможностью подключения к	браузер Google Chrome
	сети «Интернет» и	
	обеспечением доступа в	
	ОРИОКС	

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

- 1. ФОС по компетенции/подкомпетенции **ПК-3.ПП.ЛИС** «Способен выполнять проектирование устройств с памятью в соответствии с техническим заданием с использованием средств автоматизации проектирования».
- 2. ФОС по компетенции/подкомпетенции **ПК-4.ППЛИС** «Способен применять углубленные знания в области маршрута проектирования приборов, схем и устройств на ПЛИС и схем памяти»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Студенты, изучающие дисциплину, обязаны:

- посетить лекции по предмету;
- выполнить лабораторные работы (подтверждается сдачей каждой лабораторной работы);
- принять участие в дискуссиях во время лекций и лабораторных работ;
- выполнить курсовой проект;

- представить реферат;
- выполнить практическое задание на опыт деятельности.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к лекционным занятиям, лабораторным работам, использование литературы, интернет-ресурсов.

В рамках лекционного курса студенты получают знания в области проектирования на ПЛИС, включая как вопросы архитектуры ПЛИС, так и применения лингвистических средств языка Verilog для разработки схем для ПЛИС. Лектор предоставляет студентам все необходимые для этого методические материалы, а также проводит для желающих еженедельные консультации.

В рамках лабораторных работ студенты приобретают умение взаимодействовать с ПЛИС в виде решения задач разработки программного кода на языке Verilog, прошивки его в ПЛИС и верификации результатов, а также опыт проектирования цифровых устройств с использованием ПЛИС.

Входе выполнение курсовой работы студенты получают опыт разработки цифровых устройств с использованием языка Verilog и ПЛИС согласно выданному техническому заданию.

По завершению изучения дисциплины предусмотрена промежуточная аттестация в виде дифференцированного зачёта с публичным представлением результатов заданий СРС на опыт деятельности и заданий проектного типа. Самостоятельная работа студентов предусматривает индивидуальную подготовку студентов к выполнению и защите лабораторных работ, а также к выполнению и защите курсовой работы и реферата.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система (НБС).

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме максимум 80 баллов), и сдача зачёта с оценкой (максимум 20 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/

РАЗРАБОТЧИК:

Профессор кафедры ПКИМС, д.т.н._______/А.А. Беляев/

Рабочая программа дисциплины «Проектирование на программируемых логических интегральных схемах» по направлению подготовки 11.03.04 «Электроника и наноэлектроника», направленности (профилю) «Автоматизация проектирования изделий наноэлектроники», разработана на кафедре ПКИМС и утверждена на заседании кафедры $\underline{27}$ ноября $\underline{2020}$ года, протокол $\underline{N} \underline{9}$ 8

Заведующий кафедрой ПКИМС /С.В. Гаврилов

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с центром подг	отовки к аккредитации и в	независимой оценки
качества Начальник АНОК		/И.М. Никулина
Рабочая программа согласована с библиотекой	МИЭТ	
Директор библиотеки _	dend -	′ Т.П. Филиппова/