Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович

минобрна УКИ РОССИИ

Должность: Рефедеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 01.09.2023 14:04:44 «Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c8f8beaxx7hxd6ff7

УТВЕРЖДАЮ

Проректор по учебной работе

Игнатова И.Г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Практикум по промышленному программированию»

Направление подготовки – 09.03.04 «Программная инженерия» Направленность (профиль) - «Программные компоненты информационных систем»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

ПК-7 Способен применять стандарты и модели жизненного цикла программного обеспечения

Сформулирована на основе Профессионального стандарта 06.003 «Архитектор программного обеспечения»

Обобщенная трудовая функция Концептуальное, функциональное и логическое проектирование систем среднего и крупного масштаба и сложности

Трудовые функции: Разработка технического задания на систему (С/06.6)

Подкомпетенция формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-7.ППП Способен	Проектирование и разработка	Знания паттернов
применять стандарты и	программного обеспечения	проектирования ПО,
модели жизненного		принципов групповой
цикла программного		разработки, автоматизации и
обеспечения для		обеспечения качества ПО
промышленного		Умения использовать Git для
программирования при	9	контроля версий и ветвления,
решения задач		Gradle для сборки проекта,
профессиональной		JUnit и Gradle для
деятельности		тестирования
		Опыт применения языка UML
		при решении задач
		проектирования ПО
		предметных областей

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений, Блока 1 «Дисциплины (модули)» образовательной программы, изучается на 3 курсе в 6 семестре.

Входные требования к дисциплине: сформированность компетенций, определяющих готовность использовать современные технологии объектно-ориентированного программирования, применять их в практической деятельности, применять основные концепции, принципы, теории и факты, связанные с информатикой.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

47			73	Контактная работа				
Курс	Семестр	Общая трудоёмкос (3E)	Общая трудоёмкос (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная
3	6	2	72	-	16	16	40	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			ав		
№ и наименование модуля	Лекции	Лабораторные работы(часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Проектирование					Контроль выполнения	
программного					лабораторных работ №1-2;	
обеспечения	-	4	4	10	Тестирование	
					Контроль выполнения	
					практических заданий	
2. Групповая разработка					Контроль выполнения	
программного					лабораторных работ №3 - 4;	
обеспечения		4	4	10	Контроль выполнения	
					практических заданий	
			2		Тестирование	
3. Автоматизация					Контроль выполнения	
разработки программного			4	10	лабораторной работы №5	
обеспечения	-	4	4	10	Контроль выполнения	
					практических заданий	
4. Обеспечение качества					Контроль выполнения	
программного		4	4	10	лабораторных работ №6-7	
обеспечения	-	4	4	10	Контроль выполнения	
					практических заданий	

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занягия	Объем занятий (часы)	Наименование занятия
	1	2	Знакомство с шаблонами (паттернами) проектирования. Их
1			использование при проектировании ПО.
1	2 2		Знакомство с UML. Использование диаграмм UML для
		2	проектирования ПО.
2	3	2	Системы контроля версий. Основы Git.
	4 2		Ветвление в Git.
3	5 2 Использование системы сборки проекта Gradle		Использование системы сборки проекта Gradle
4	6	2	Обеспечение тестирования ПО
4	7	4	Статические анализаторы кода. Проверка стиля кода.

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы	
1	1	2	Паттерны проектирования.	
1	2	2	Язык UML, его применение в проектировании.	
2	3	2	Системы контроля версий. Основы Git.	
2	² 4 2 Ветвление в Git		Ветвление в Git	
3	5	2	Использование Gradle для сборки проекта.	
6 2 Использование JUnit и Gradle для обеспечения		2	Использование JUnit и Gradle для обеспечения тестирования проекта.	
4	7	4	Статический анализ кода.	

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС		
1	2	Выполнение заданий по теме «Паттерны проектирования».		
	2	Выполнение заданий по теме «Язык UML»		
	6	Подготовка к лабораторным работам. Оформление отчетов по лабораторным работам.		
2	2	Выполнение заданий по теме «Основы Git»		

898	2	Выполнение заданий по теме «Ветвление в Git»					
	6	Подготовка к лабораторным работам. Оформление отчетов по лабораторным					
		работам.					
3	2	Выполнение рубежного контроля по модулям «Проектирование ПО» и					
		«Групповая разработка ПО»					
	2	Выполнение заданий по теме «Использование Gradle для сборки проекта»					
	6	Подготовка к лабораторным работам. Оформление отчетов по лабораторным					
		работам.					
4	2	Выполнение заданий по теме «Обеспечение тестирования ПО»					
	2	Выполнение заданий по теме «Статический анализ кода»					
	6	Подготовка к лабораторным работам. Оформление отчетов по лабораторным					
		работам.					

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модуль 1-4

- Теоретические сведения
- Методические указания к лабораторным работам №1-7
- Пример решения задачи
- Порядок работы
- Задания на самостоятельную работу

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Малыхин А.Ю. Лабораторный практикум по промышленному программированию / А.Ю. Малыхин, Чжо Зо Е; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2016. 100 с.
- 2. Деменков, Н.П. Программирование и конфигурирование промышленных сетей: учебное пособие. Электрон. дан. М. : МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2010. 116 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=52401 (Дата обращения: 19.11.2020)
- 3. Дэвид Хеффельфингер Разработка приложений Java EE 6 в NetBeans 7 [Электронный ресурс]:. Электрон. дан. М.: ДМК Пресс, 2013. 332 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=58693 (Дата обращения 19.11.2020)
- 4. Горнаков, С.Г. Программирование мобильных телефонов на Java 2 Micro Edition Электрон. дан. М. : ДМК Пресс, 2008. 511 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=1189 (Дата обращения: 19.11.2020)

5. Дэвид Хеффельфингер Java EE 6 и сервер приложений GlassFish 3: учебное пособие. — Электрон. дан. — М. : ДМК Пресс, 2013. — 416 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=63193 (Дата обращения 19.11.2020)

Периодическая литература

- 1. Программные системы: теория и приложения: Электронный научный журнал / Ин-т программных систем им. А.К. Айламазяна РАН. Переславль-Залесский, 2010 . URL: http://psta.psiras.ru/archives/archives.html (дата обращения: 19.11.2020)
- 2. Программирование / Ин-т системного программирования PAH. М.: Наука, 1975 -. URL: http://elibrary.ru/contents.asp?titleid=7966 (дата обращения: 19.11.2020)

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

- 1. SWRIT. Профессиональная разработка технической документации: сайт. URL: https://www.swrit.ru/gost-espd.html (дата обращения: 01.11.2020)
- 2. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 28.10.2020). Режим доступа: для авторизированных пользователей МИЭТ
- 3. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения : 05.11.2020). Режим доступа: для зарегистрированных пользователей
- 4. Единое окно доступа к информационным ресурсам: сайт /ФГАУ ГНИИ ИТТ "Информика". Москва, 2005-2010. URL: http://window.edu.ru/catalog/ (дата обращения: 01.11.2020)
- 5. Национальный открытый университет ИНТУИТ: сайт. Москва, 2003-2021. URL: http://www.intuit.ru/ (дата обращения: 01.11.2020). Режим доступа: для зарегистрированных пользователей

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде. Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС(http://orioks.miet.ru).

В ходе реализации обучения используется модель обучения «Перевернутый класс», предполагающая, что учебный процесс начинается с постановки проблемного задания, для выполнения которого студент должен самостоятельно ознакомиться с материалом, размещенным в электронной среде. В аудитории проверяются и дополняются полученные знания с использованием докладов, дискуссий и обсуждений. Работа поводится по следующей схеме: СРС (онлайновая предаудиторная работа с использованием внешнего курса) - аудиторная работа (обсуждение с представлением презентаций с применением на практическом примере изученного материала, выполнением лабораторных заданий и т.п.) - обратная связь с обсуждением и подведением итогов.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, Skype.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы: шаблоны и примеры оформления выполненной работы. разъясняющий суть работы видеоролик, требования к выполнению и оформлению результата.

При проведении занятий и для самостоятельной работы используются внешние электронные ресурсы:

- 1. 14 UML диаграмм за 10 минут канал YouTube «Аве Кодер» URL: https://www.youtube.com/watch?v=0I9aIP5gKCg&ab_channel=АвеКодер (Дата обращения: 01.11.2020)
- 2. Git и GitHub Курс Для Новичков канал YouTube «Владилен Минин» URL: https://www.youtube.com/watch?v=zZBiln_2FhM&ab_channel=BладиленМинин (Дата обращения: 01.11.2020)
- 3. GIT и GITLAB 3A 45 МИНУТ | OCHOBЫ канал YouTube «ПСЕВДОКОДЕР» URL: https://www.youtube.com/watch?v=8a9fPDkzk5M&ab_channel=ПСЕВДОКОДЕР (Дата обращения: 01.11.2020)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы*	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Компьютерный класс	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в ОРИОКС	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC, Microsoft Visual Studio
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в ОРИОКС	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC, Microsoft Visual Studio

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по компетенции/подкомпетенции ПК-7.ППП «Способен применять стандарты и модели жизненного цикла программного обеспечения для промышленного программирования при решения задач профессиональной деятельности».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Поскольку лекции в куре не предусмотрены. Практические занятия и лабораторные работы предполагают самостоятельное изучения теоретических материалов студентом до занятий. Перед выполнением лабораторных работ необходимо изучить рекомендуемую литературу по каждой теме. Лабораторные работы необходимо подготовить дома, выполнить и защитить в компьютерном классе.

Предполагается последовательное выполнение лабораторных работ, поскольку каждое следующее задание основано на использовании навыков и знаний, полученных при выполнении предыдущих заданий. Результатом выполнения лабораторных работ является документ MS Office, составленный и оформленный в соответствии с требованиями и схема алгоритма решения поставленной задачи.

В курсе предусмотрены консультации для обсуждения сложных вопросов выполнения заданий.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 40 баллов), активность в семестре (в сумме до 20 баллов) и сдача дифференцированного зачета (до 40 баллов). По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий приведены в ОРИОКС http://orioks.miet.ru/.

Мониторинг успеваемости студентов проводится в течение семестра трижды: по итогам 1-8 учебных недель, 9-12 учебных недель, 13-18 недель.

РАЗРАБОТЧИК:

Доцент, д.т.н.

/Черников Б. В./

Рабочая программа дисциплины «Практикум по промышленному программированию» по направлению подготовки 09.03.04 «Программная инженерия» направленности (профиля) «Программные компоненты информационных систем» разработана в институте СПИНТех и утверждена на заседании института 24 ноября 2020 года, протокол № 3

Директор СПИНТех _	Socaf	/Л.Г.Гагарина/
	/	

ЛИСТ СОГЛАСОВАНИЯ

Программа согласована с Центром под	готовки к аккредитации	и независимой
оценке качества	<i>N</i> ₁	
Начальник АНОК		/И.М.Никулина/
Программа согласована с библиотекой	ТЄИМ	
Директор библиотеки Му §		/ Т.П.Филиппова /