Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александровичностерство науки и высшего образования Российской Федерации

Должность: Ректор (Федеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 31.08.2023 12:24:52

«Национальный исследовательский университет

Уникальный программный ключ: уникальный программный ключ: «Московский институт электронной техники» ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c8f8bea882b8d602

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Параллельные вычисления»

Направление подготовки — 01.03.04 «Прикладная математика» Направленность (профиль) - «Применение математических методов к решению инженерных и естественнонаучных задач»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных **Компетенция ПК-4** «Способен осуществлять выбор платформ и инструментальных программно-аппаратных средств для реализации информационных, управляющих и вычислительных систем» сформулирована на основе профессионального стандарта» 06.001 «Программист»

Обобщенная трудовая функция «D Разработка требований и проектирование программного обеспечения»

Трудовые функции: «D/03.6 Проектирование программного обеспечения»

Подкомпетенции,	Задачи профес-	Humana and a company of the contract of	
формируемые в	сиональной дея-	Индикаторы достижения подкомпетен- ций	
дисциплине	тельности	ции	
ПК-4.ПарВыч.	Разработка парал-	Знает	
Способность приме-	лельных численных	- базовые принципы формирования	
нять существующие	алгоритмов и соз-	математических моделей;	
программные среды	дание, отладка,	- базовые численные методы решения	
и разрабатывать соб-	проверка работо-	прикладных задач;	
ственные параллель-	способности, мо-	- базовые программные среды и	
ные программные	дификация при-	инструменты параллельного	
средства для реше-	кладного парал-	программирования	
ния прикладных за-	лельного про-	Умеет	
дач методами мате-	граммного обеспе-	- формулировать модельные прикладные	
матического и ком-	чения современных	задачи,	
пьютерного модели-	компьютерных и	- применять современные численные	
рования	суперкомпьютер-	методы их решения,	
	ных вычислитель-	- разрабатывать параллельные реализации	
	ных систем	численных алгоритмов,	
		- выбирать оптимальное сочетание	
		базовой программной среды и	
		инструментов параллельного	
		программирования в целях решения	
		компьютерными средствами прикладных	
		задач,	
		- решать с помощью существующих	
		программных сред и собственных	
		параллельных программных средств	
		конкретные фундаментальные и	
		прикладные математических задачи.	
		<i>Имеет опыт</i> разработки параллельных	
		алгоритмов и программ для решения кон-	
		кретных фундаментальных и прикладных	
		математических задач, в том числе базо-	
		вых задач математической физики.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине:

- 1. Владение знаниями и умениями по основам линейной алгебры и аналитической геометрии, математического анализа, дискретной математики, информатики, теории дифференциальных уравнений (обыкновенных и в частных производных), методов вычислительной математики.
- 2. Владение знаниями и умениями по курсам программирования на языке С, объектно-ориентированного программирования на языке С++.
- 3. Владение английским языком на уровне общего образовательного курса технического вуза.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Курс	естр	0сть	ость асы)	Контактная работа		асы)	чная ация	
	Семес	Общая трудоёмко	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятель работа (ча	Промежуточ
4	1	4	144	32	16	16	44	Эк (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактн	ая работа		ная	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная	Формы текущего контроля
1. Введение в параллельные вычисления	4	2	2	8	Выполнение и защита лабораторных работ 1-2
2. Параллельное программирование	4	2	2	6	Выполнение и защита лабораторных работ 3-4

	Контакти	ая работа		ная ота		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
3. Решение основных математических задач, возникающих при проектировании электронных приборов	4	2	2	6	Выполнение и защита лабораторных работ 5-6	
4. Одномерные краевые и начально-краевые задачи	4	2	2	6	Выполнение и защита лабораторных работ 7-8	
5. Многомерные краевые и начально- краевые задачи	8	4	4	10	Выполнение и защита лабораторных работ 9-10	
6. Решение краевых и начально-краевых задач в криволинейных областях	8	4	4	10	Защита лабораторных работ 11-12 Защита индивидуального комплексного задания	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание		
1	1	2	Введение в параллельные вычисления. Производительность вычислительных систем, методы ее оценки и способы повышения.		
	2	2	Архитектуры параллельных вычислительных систем.		
2	3	2	Принципы построения параллельных алгоритмов. Виды параллелизма. Организация параллельных процессов. Примеры.		
	4	2	Средства параллельного программирования. Методы разработки параллельных программ. Проблемы балансировки загрузки.		
3	5	2	Параллельные алгоритмы в задачах математической физики. Численные методы и параллельные алгоритмы решения ОДУ.		
	6	2	Параллельные алгоритмы решения спектральных и экстремальных задач.		
4	7	2	Численные методы и параллельные алгоритмы решения пространственноодномерных краевых задач		
	8	2	Численные методы и параллельные алгоритмы решения пространственно-одномерных начально-краевых задач		
5	9,10	4	Численные методы и параллельные алгоритмы решения начально-краевых задач для параболических уравнений		
	11,12	4	Численные методы и параллельные алгоритмы решения краевых задач для		

			эллиптических уравнений
6	13,14	4	Численные методы и параллельные алгоритмы решения краевых и начально-
			краевых задач в двухмерных криволинейных областях. Общая методология.
			Методы нерегулярных шаблонов и фиктивных областей.
	15,16	4	Численные методы и параллельные алгоритмы решения краевых и начально-
			краевых задач в двухмерных криволинейных областях. Метод нерегулярных
			сеток.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание
1	1	1	Работа с персональным компьютером под управлением ОС Windows и Linux.
		1	Измерение производительности персонального компьютера. Примеры. Создание локальных параллельных процессов. Обмен данными между локаль-
		1	ными параллельными процессами. Библиотека PThreads и стандарт OpenMP.
			Примеры.
2	2	1	Стандарт МРІ. Основные группы функций МРІ. Обмены МРІ типа точка-точка.
			Коллективные функции МРІ. Групповые вычисления. Примеры.
		1	Организация различных схем обменов. Виртуальные топологии. Гибридные схе-
3	2	1	мы вычислений. Примеры.
3	3	1	Параллельная реализация численного решения задачи Коши для ОДУ и для системы ОДУ 1-го порядка. Примеры.
		1	Параллельная реализация численного решения спектральной задачи. Параллель-
			ная реализация численного решения задачи поиска минимума функции многих
			переменных. Примеры.
4	4	1	Параллельная реализация численного решения линейной и квазилинейной про-
			странственно одномерных краевых задач. Примеры.
		1	Параллельная реализация численного решения линейного и квазилинейного про-
5	5	1	странственно одномерного уравнения теплопроводности. Примеры. Параллельная реализация численного решения задачи Дирихле для двумерного
	3	1	уравнения Пуассона прямыми и итерационными методами. Примеры.
		1	Параллельная реализация численного решения начально-краевых задач для дву-
			мерного уравнения теплопроводности и двумерного уравнения колебаний стру-
			ны. Примеры.
	6	1	Параллельная реализация численного решения задачи Дирихле для двумерного
			уравнения Пуассона прямыми и итерационными методами.
		1	Параллельная реализация численного решения начально-краевых задач для дву-
			мерного уравнения теплопроводности и двумерного уравнения колебаний стру-
6	7	2	ны. Параллельная реализация численного решения задачи Дирихле для двумерного
	'	<i>_</i>	уравнения Пуассона в криволинейной области на треугольной сетке.
	8	2	Параллельная реализация численного решения начально-краевой задачи для
			трехмерного уравнения теплопроводности в многосвязной области, составленной
			из параллелепипедов.

4.3. Лабораторные занятия

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Краткое содержание		
1	1	1	Измерение производительности персонального компьютера на элементарных		
			операциях с двойной точностью: сложение, вычитание, умножение, деление,		
		1	возведение в степень, а также при вычислениях функций: sin(x), exp(x), ln(x). Решение задачи одномерного численного интегрирования с помощью распа-		
		1	раллеливания по процессам и трэдам в рамках одного вычислительного узла.		
2	2	1	Решение задач двух- и трехмерного численного интегрирования с помощью		
			распараллеливания по процессам и трэдам в рамках нескольких вычислитель-		
			ных узлов.		
		1	Решение задачи сортировки распределенного массива вещественных чисел		
			большой размерности.		
3	3	1	Численное решение задачи Коши для системы ОДУ 1-го порядка большой		
		1	размерности.		
		1	Решение спектральной задачи для вещественной симметричной матрицы с помощью QR-алгоритма. Поиск глобального минимума функции двух пере-		
			менных методом кривых Пеано.		
4	4	1	Численное решение линейной и квазилинейной пространственно одномерных		
			краевых задач для ОДУ 2-го порядка.		
		1	Численное решение начально-краевых задач для линейного и квазилинейного		
			пространственно одномерного уравнения теплопроводности.		
5	5	2	Численное решение задачи Дирихле для двумерного уравнения Пуассона		
			прямыми и итерационными методами.		
	6	2	Численное решение начально-краевых задач для двумерного уравнения теп-		
6	7	2	лопроводности и двумерного уравнения колебаний струны.		
0	'	2	Численное решение задачи Дирихле для двумерного уравнения Пуассона в криволинейной области на треугольной сетке.		
	8	2	Численное решение начально-краевой задачи для трехмерного уравнения теп-		
		_	лопроводности в многосвязной области, составленной из параллелепипедов.		

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС	
1	4	Выполнение и подготовка к защите лабораторных работ 1,2	
2	4	Выполнение и подготовка к защите лабораторных работ 3,4	
3	4	Выполнение и подготовка к защите лабораторных работ 5,6	
4	4	Выполнение и подготовка к защите лабораторных работ 7,8	
5	4	Выполнение и подготовка к защите лабораторных работ 9,10	
6	4	Выполнение и подготовка к защите лабораторных работ 11,12	
5-6	29	Выполнение индивидуального комплексного задания	

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрено

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru):

Общее

✓ Методические указания студентам по изучению дисциплины:

При изучении теоретических основ по модулям 1-6 необходимо использование материалов с сайта преподавателя, в том числе конспекта лекций и семинарских занятий.

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины складывается из материалов на сайте преподавателя (http://polyakov.imamod.ru/arc/stud/index21.html) и удаленного доступа по протоколу ssh к учебному кластеру ИПМ им. М.В.Келдыша РАН по адресу imm10.keldysh.ru.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Богачев К.Ю. Основы параллельного программирования: Учеб. пособие / К.Ю. Богачев. 3-е изд., электронное. М.: Бином. Лаборатория знаний, 2015. 345 с. (Математика). URL: https://e.lanbook.com/book/70745 (дата обращения: 04.11.2020).
- 2. Боресков А.В. Основы работы с технологией CUDA / А.В. Боресков, А.А. Харламов. М. : ДМК Пресс, 2010. 232 с. URL: https://e.lanbook.com/book/1260 (дата обращения: 04.11.2020).
- 3. Сандерс Дж. (Sanders J.).Технология CUDA в примерах. Введение в программирование графических процессоров = CUDA by Example: An Introduction to general-purpose GPU Programmong / Сандерс Дж., Э. Кэндрот; [пер. с англ.]; Предисл. Дж. Донгарра; науч. ред. А.В. Боресков. М. : ДМК Пресс, 2011. 232 с. URL: https://e.lanbook.com/book/3029 (дата обращения: 04.11.2020).
- 4. Уильямс Э. Параллельное программирование на С++ в действии: Практика разработки многопоточных программ: Пер. с англ. А.А. Слинкина / Э. Уильямс. М. : ДМК Пресс, 2012. 672 с. URL: https://e.lanbook.com/book/4813 (дата обращения: 04.11.2020)

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 05.11.2020). Режим доступа: для зарегистрированных пользователей.
- 2. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 28.10.2020). Режим доступа: для авторизированных пользователей МИЭТ.

- 3. «Единое окно доступа к образовательным ресурсам. Раздел. Информатика и информационные технологии»: Информационная система; URL: https://habr.com/ (дата обращения: 03.11.2020). Режим доступа: общедоступный.
- 4. Крупнейший веб-сервис для хостинга IT-проектов и их совместной разработки; URL: https://github.com/ (дата обращения: 03.11.2020). Режим доступа: общедоступный.
- 5. Общероссийский математический портал; URL: http://www.mathnet.ru/ (дата обращения: 03.11.2020). Режим доступа: общедоступный.
- 6. Портал по параллельным вычислениям НИВЦ МГУ; URL: http://www.parallel.ru (дата обращения: 03.11.2020). Режим доступа: общедоступный.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В данном курсе применяется классическая модель обучения, реализуемая в очном или удаленном (через Интернет) режимах. Преподаватель читает лекции, используя слайды, приводя примеры на доске или на специальном интернет-ресурсе. Студенты могут задавать вопросы во время изложения материала.

Основной формой активных и интерактивных форм проведения занятий в данном курсе являются обсуждения на лекционных, практических и лабораторных занятиях вопросов теории, предлагаемых (студентами, преподавателем) методов решения задач с анализом возможных или возникающих ошибок в решениях.

Обсуждение идет со всей группой. Преподаватель является организатором обсуждения, может заострить внимание на необходимость обсуждения некоторых вопросов, наличие ошибок, помогает выделить в выдвигаемых студентами гипотезах, утверждениях верные идеи. Каждый студент может выдвинуть гипотезу, решение, а также критически их оценить.

Типовой сценарий лекционного занятия включает в себя, как правило, следующие этапы:

- 1. Изложение лекционного материала преподавателем.
- 2. Обсуждение лекционного материала студентами и преподавателем.
- 3. Подведение итогов, обобщение и систематизация.

Типовой сценарий практического (семинарского) занятия включает в себя, как правило, следующие этапы:

- 1. Изложение преподавателем постановки и методов решения практической задачи, представление типовых программ.
 - 2. Анализ и тестирование студентами типовых программ.
 - 3. Обсуждение эффективности предложенного программного решения.
 - 4. Подведение итогов, обобщение и систематизация.

Типовой сценарий лабораторного занятия включает в себя, как правило, следующие этапы:

- 1. Изложение преподавателем постановки задачи, возможных численных методов ее решения, возможных программных реализаций.
 - 2. Обсуждение деталей лабораторного задания.
- 3. Подведение итогов, выработка рекомендаций к выполнению лабораторного задания.

Контроль за усвоением материала производится на основе анализа выполнения учащимися лабораторных работ.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Моноблок Dell OptiPlex 747017 в коплекте мышка и клавиатура, моноблоки Dell OptiPlex 747015 в коплекте мышки и клавиатуры, коммутатор D-link 48 портов, система записи и трансляции с PTZ камерой, телевизор LG 65UM7300PLB	Azure (Win Pro 10), Microsoft Office Pro, 7z, Acrobat Reader DC, Oracle VM, Python, Adobe Flash Player Доступ к ПО через сеть Интернет к учебному кластеру ИПМ им. М.В.Келдыша РАН (договор с базовой кафедрой ИПМ им. М.В.Келдыша РАН): Компилятор Intel Parallel Studio XE Professional Edition for C++ Linux, Средство параллельного программирования Intel MPI Library for Linux, SSH-клиент putty (свободно распространяемое ПО)
Учебная аудитория	Учебная доска Спец. оснащения не требуется	ПО не требуется
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Астоват reader DC Доступ к ПО через сеть Интернет к учебному кластеру ИПМ им. М.В.Келдыша РАН (договор с базовой кафедрой ИПМ им. М.В.Келдыша РАН): 1. Компилятор Intel Parallel Studio XE Professional Edition for C++ Linux 2. Средство параллельного программирования Intel MPI Library for Linux 3. SSH-клиент putty (свободно распространяемое ПО)

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-4.ПарВыч. Способность применять существующие программные среды и разрабатывать собственные параллельные программные средства для решения прикладных задач методами математического и компьютерного моделирования.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Лекции, практические занятия и лабораторные работы проводятся контактно (в очном или удаленном режиме) в соответствии с расписанием. Посещение занятий обязательно. Дополнительной формой работы являются консультации, их посещать необязательно.

В период изучения дисциплины студентам предоставляется в электронном виде учебные материалы лекций, задания для лабораторных работ, а также «Методические рекомендации студентам по изучению дисциплины». Материалы размещаются по адресу http://polyakov.imamod.ru/arc/stud/index21.html.

Важное значение придается соблюдению сроков сдачи контрольных мероприятий. Задержка в сдаче приводит к уменьшению числа баллов, начисляемых за выполнение, вплоть до полной их потери. Выполнение текущих лабораторных работ рассматривается как проявление активности студента при обучении и соответственно отражается в структуре контрольных мероприятий.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме от 0 до 46 баллов), активность в семестре (в сумме от 0 до 4 баллов) и сдача экзамена (от 0 до 50 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Профессор каф. ММ, д.ф.-м.н. Хамий /Поляков С.В./

Рабочая программа дисциплины «Параллельные вычисления» по направлению подготовки 01.03.04 математика», направленность «Прикладная (профиль) «Применение математических методов к решению инженерных и естественнонаучных задач», разработана на кафедре ВМ-1 и утверждена на заседании кафедры 10.11

Заведующий кафедрой ВМ-1

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

/ И.М. Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки _______/ Т.П. Филиппова /