Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александиричистерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ Дата подписания: 01.09.2023 15:02:18

Дата подписания: 01.09:2023 15:02:18
Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f7**36M/968f9Bc38ff2b8Hx07**итут электронной техники»

УТВЕРЖДАЮ

Проректор до учебной работе

И.Г. Игнатова

«14» декабря 2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Моделирование технологических процессов»

Направление подготовки - 11.03.04 «Электроника и наноэлектроника» Направленность (профиль) – «Интегральная электроника и наноэлектроника»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-5. Способен разрабатывать и исследовать технологию производства изделий микро- и наноэлектроники различного функционального назначения

сформулирована на основе профессионального стандарта 40.040 «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков».

Обобщенная трудовая функция В Разработка топологии, физического представления стандартных ячеек библиотеки.

Трудовая функция В/01.6 Размещение и соединение элементов электрических схем стандартных ячеек библиотеки

Подкомпетенции,	n 1 °	H				
формируемые в	Задачи профессиональной	Индикаторы достижения				
дисциплине	деятельности	подкомпетенций				
ПК-5.МТП Способен	математическое	Знания: основные физические				
выполнять расчеты	моделирование	явления и математическое				
режимов	электронных приборов,	описание процессов формирования				
технологических	схем и устройств	элементов интегральных схем;				
процессов	различного	принципы численного				
формирования	функционального	моделирования технологических				
полупроводниковых	назначения на базе	процессов и математических				
приборов средствами	стандартных пакетов	моделей основных				
приборно-	автоматизированного	технологических операций				
технологического	проектирования	интегральной электроники и				
моделирования		наноэлектроники; современные				
		достижения отечественной и				
		зарубежной науки и техники в				
		области математического				
		моделирования технологических				
		процессов интегральной				
		электроники и наноэлектроники.				
		Умения: осуществлять выбор				
		моделей для численного				
		моделирования процессов				
		формирования основных				
		интегральных элементов и				
		наноструктур и проводить оценку				
		параметров интегральной				
		структуры.				
		Опыт деятельности:				
		по применению методов расчета				

режимов и исследования
технологических процессов
производства изделий микро- и
наноэлектроники на базе
программных средств численного
моделирования

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине:

Знания: дифференциальные уравнения, теория вероятностей и математическая статистика, численные методы; молекулярная теория газов, электромагнетизм, оптика, основы атомной физики; основные сведения о химических реакциях; классическая и квантовая статистика, квантовая механика; основные сведения о полупроводниковых, металлических и диэлектрических материалах, используемых в технологии формирования электронной компонентной базы и методах их создания; структура и симметрия кристаллов, основы зонной теории; основные технологические операции изготовления элементов интегральной микро- и наноэлектроники.

Умения: исследовать базовые технологические операции изготовления элементов СБИС. Опыт деятельности: по разработке и исследованию технологии производства изделий микро- и наноэлектроники различного функционального назначения.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		TP	ть	Контан	стная раб	ота		
Kypc	Семестр	Общая трудоёмкост (ЗЕ)	Общая трудоёмкості (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
3	6	4	144	16	32	-	60	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конт	гактная ра	бота	8			
№ и наименование модуля	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа	Формы текущего контроля		
Модуль 1. Введение.					Выполнение и защита		
Моделирование ионной	4	-	8	14	лабораторных работ		
ионнои имплантации					Тест		
Модуль 2.					Выполнение и защита		
Методы	6	-	20		лабораторных работ		
моделирования				26	Тест		
термических							
процессов							
Модуль 3.							
Моделирование процессов	4			6	Тест		
травления/осаждени	7	_	_	U	TCCI		
я и фотолитографии							
Модуль 4.					Тест		
Методы численного					TOUT		
моделирования	2	-	4	14	Сдача		
полупроводниковых					практикоориентированно		
приборов					го задания		

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1	2	Предмет курса. Роль приборно-технологического моделирования в проектировании интегральных схем
	2	2	Ионная имплантация, механизмы торможения ионов. Теория ЛШШ, диффузионная модель Бирсака. Эффект каналирования. Системы координат при моделировании ионной имплантации. Моделирование ионной имплантации методом Монте-Карло. Аналитические аппроксимации распределения ионов. Функции Гаусса. Распределения Пирсона-IV. Аналитические аппроксимации распределения ионов, учитывающие эффект каналирования. Распределения постимплантационных дефектов. Особенности моделирования ионной имплантации в многослойных мишенях. Эффект распыления мишени.
2	3	2	Диффузия примесей, описание на макроскопическом и микроскопическом уровне. Основные механизмы диффузии примесей в кристаллической решетке. Связанная диффузия. Коэффициент диффузии, зависимость от температуры и концентрации носителей. Модель связанной диффузии, основные уравнения. Граничные и начальные условия в моделировании диффузии. Моделирование кластеризации примеси.
	4	2	Особенности диффузии различных типов примеси. Взаимное влияние примесей в процессе диффузии. TED —эффект в наноразмерных структурах. Моделирование диффузии в поликристаллическом кремнии. Роль флуктуаций и распределения межзеренных границ в наноразмерных структурах с поликремниевым затвором.
	5	2	Термическое окисление кремния. Модель Дила-Гроува, вывод основного уравнения. Константы линейного и параболического роста. Начальный этап процесса окисления. Механизмы возникновения механических напряжений. Механические напряжения в наноразмерных кремниевых структурах. Основные этапы численного моделирования процесса окисления. Влияние окислительной атмосферы на процесс диффузии. Моделирование диффузии в присутствии подвижных границ. Моделирование сегрегации примеси. Модель Массуда. Моделирование двумерного окисления. Силицидизация.
3	6	2	Физико-химические и геометрические модели травления/осаждения слоев. Алгоритм струны. Модель баллистического осаждения. Параметры моделей травления/осаждения.
	7	2	Основные этапы численного моделирования литографии. Расчет

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание						
			изображения на поверхности фоторезиста. Расчет интенсивности освещения в пленке фоторезиста. Моделирование процесса проявления.						
			Особенности моделирования литографических процессов при создании						
			наноразмерных элементов.						
	8	2	Базовые уравнения численного моделирования приборов. Дрейфово-						
			диффузионное приближение. Термодинамическая и гидродинамическая						
4			модели. Дискретизация базовых уравнений. Методы дискретизации.						
4			Проблемы устойчивости и сходимости численного решения.						
			Физические параметры при численном моделировании приборов.						
			Пределы и ограничения моделей в наноразмерной области.						

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные занятия

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	1-2	8	Моделирование процесса ионной имплантации примеси в кремний
	3-4	8	Моделирование процесса окисления кремния
2	5 4 Аналитические модели диффузии примеси		Аналитические модели диффузии примеси
	6 4 Модели диффузии, активации и кластеризации		Модели диффузии, активации и кластеризации
	7	4	Параметры и граничные условия для моделей диффузии
4	8	4	Выполнение практикоориентаированного задания

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	8	Подготовка к выполнению и защите лабораторной работы
	6	Подготовка к тестированию
2	20	Подготовка к выполнению и защите лабораторных работ
	6	Подготовка к тестированию
3	6	Подготовка к тестированию
4	6	Подготовка к тестированию
	8	Подготовка к выполнению практикоориентированного задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: , http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Моделирование технологических процессов»;

Модуль 1 «Введение. Моделирование ионной имплантации»

✓ Материалы для подготовки к лабораторным работам №1,2,3, для подготовки к тесту, контрольные вопросы к лекциям, лабораторным работам и экзамену, конспект лекций 1,2, презентации к лекциям.

Модуль 2 «Методы моделирования термических процессов»

✓ Материалы для подготовки к лабораторным работам №4,5, для подготовки к тесту, контрольные вопросы к лекциям, лабораторным работам и экзамену, конспект лекций 3,4,5, презентации к лекциям.

Модуль 3 «Моделирование процессов травления/осаждения и фотолитографии»

✓ Материалы для подготовки к лабораторной работе №6, контрольные вопросы к лекциям, лабораторным работам и экзамену, конспект лекций 6,7, презентации к лекциям.

Модуль 4 «Методы численного моделирования полупроводниковых приборов»

✓ Материалы для подготовки к лабораторным работам №7,8, для подготовки к тесту, контрольные вопросы к лекциям, лабораторным работам и экзамену, конспект лекции 8, презентация к лекции.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Лабораторный практикум по курсу "Моделирование технологических процессов" / Е.А. Артамонова, А.Г. Балашов, А.С. Ключников [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. Т.Ю. Крупкиной. М.: МИЭТ, 2018. 108 с.
- 2. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 1: Технологические процессы изготовления кремниевых интегральных схем и их моделирование / М.А. Королев, Т.Ю. Крупкина, М.А. Ревелева; Под ред. Ю.А. Чаплыгина. 3-е изд., электронное. М.: Бином. Лаборатория знаний, 2015. 400 с. URL: https://e.lanbook.com/book/66309 (дата обращения: 09.02.2020). ISBN 978-5-9963-2904-5
- 3. Моделирование перспективных элементов устройств интегральной наноэлектроники / Ю.А. Чаплыгин, Е.А. Артамонова, А.Г. Балашов [и др.]. ISBN 978-5-94836-422-3 // Нанотехнологии в электронике. М.: Техносфера, 2015. С. 14-51
- 4. Нано-КМОП-схемы и проектирование на физическом уровне [Текст] / Б.П. Вонг [и др.]; Пер. с англ. К.В. Юдинцева, под ред. Н.А. Шелепина. М.: Техносфера, 2014. 432 с. ISBN 978-5-94836-377-6

Периодические издания

- 1. RUSSIAN MICROELECTRONICS. : Springer, [2000] . URL: http://link.springer.com/journal/11180 (дата обращения: 30.09.2020). Режим доступа: для авториз. пользователей МИЭТ
- 2. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 .
- 3. IEEE Transactions on Electron Devices. USA : IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=16 (дата обращения: 14.06.2020). Режим доступа: по подписке МИЭТ

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2020). Режим доступа: для зарегистрир. Пользователей
- 2. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 30.09.2020). Режим доступа: для авториз. пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС http://orioks.miet.ru.

В ходе реализации обучения используются **смешанное обучение**, основанное на интеграции технологий традиционного и электронного обучения. Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя. Информационно-коммуникативные технологии с использованием сети Интернет применяются для консультирования студентов, в том числе с использованием сервисов Zoom.

Применяются дистанционные образовательные технологии при проведении самостоятельной работы и выполнении заданий СРС с использованием выполненных в iSpring онлайн-модулей, размещенных в ОРИОКС.

Моделирование технологических процессов проводится методами численного моделирования в среде виртуального производства интегральных схем на базе программных средств TCAD Synopsys http://www.synopsys.com

Дисциплина может реализовываться с использованием дистанционного обучения. При дистанционном обучении проводятся *online* лекции и лабораторные занятия с использованием платформы Zoom, вся информация доступна для студентов через среду ОРИОКС.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Помещение для	Компьютерная техника с	Операционная
самостоятельной работы	возможностью	система Microsoft Windows от 7
	подключения к сети	версии и выше, Microsoft Office
	«Интернет» и	Professional Plus или Open
	обеспечением доступа в	Office, браузер (Firefox, Google
	электронную	Crome);
	информационно-	Acrobat reader DC
	образовательную среду	
	МИЭТ	
Учебная аудитория	Мультимедийное	Операционная
	оборудование	система Microsoft Windows от 7
		версии и выше, Microsoft Office
		Professional Plus
Компьютерный класс	Компьютеры, сервер,	Операционные системы ОС
	сетевой принтер.	LINUX, программное
		обеспечение TCAD Synopsys

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-5.МТП «Способен выполнять расчеты режимов технологических процессов формирования полупроводниковых приборов средствами приборно-технологического моделирования».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Содержание дисциплины состоит из четырех модулей, которые изучаются последовательно:

- 1. Введение. Моделирование ионной имплантации.
- 1.1 Предмет курса. Роль приборно-технологического моделирования в проектировании интегральных схем
- 1.2 Моделирование ионной имплантации, механизмы торможения ионов Аналитические аппроксимации распределения ионов.
 - 1.3 Моделирование процесса ионной имплантации примеси в кремний
- 2. Методы моделирования термических процессов.
 - 2.1. Диффузия примесей в кремнии
- 2.2. Особенности диффузии различных типов примеси. TED –эффект в наноразмерных структурах.
- 2.3. Термическое окисление кремния. Основные этапы численного моделирования процесса окисления.
 - 2.4. Моделирование процесса окисления кремния
- 2.5. Моделирование процесса диффузии примеси. Аналитические модели диффузии
- 2.6. Модели диффузии, активации-кластеризации, используемые в программе технологического моделирования Sentaurus Process
- 3. Моделирование процессов травления/осаждения и фотолитографии
 - 3.1 Физико-химические и геометрические модели травления/осаждения слоев.
 - 3.2 Моделирование процесса фотолитографии.
- 4. Методы численного моделирования полупроводниковых приборов
 - 4.1 Базовые уравнения численного моделирования приборов.

Студенты, изучающие дисциплину, обязаны:

- освоить темы (освоение тем подтверждается сдачей тестов),
- выполнить все лабораторные работы,

- выполнить комплексное задание на расчет режимов технологических процессов формирования полупроводниковых приборов средствами приборнотехнологического моделирования,
- принять участие в лекции пресс-конференции с представлением результатов выполнения заданий СРС, отражающих опыт проектной деятельности.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к лекционным и лабораторным занятиям, комплексному заданию.

Практикоориентированное задание выполняется на последней лабораторной работе. Начинается с тестирования, по окончании которого необходимо выполнить пракоориентированное задание на моделирование технологического маршрута и определение параметров технологических операций. Отчет с результатами формируется на компьютере в соответствие с требованиями к отчету, изложенными в методических указаниях, и распечатывается для защиты. Защита проходит в виде опроса после проверки отчета.

По завершению изучения дисциплины предусмотрена промежуточная аттестация в виде экзамена.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 57 баллов), активность в семестре (8 баллов) и сдача экзамена (35 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/

РАЗРАБОТЧИК:

Профессор кафедры ИЭМС, д.т.н., проф. _____/Т.Ю. Крупкина/

Рабочая программа дисциплины «Моделирование технологических процессов» по направлению подготовки 11.03.04 «Электроника и наноэлектроника» по направленности (профилю) «Интегральная электроника и наноэлектроника» разработана в на кафедре ИЭМС и утверждена на заседании кафедры ИЭМС 26.11 2020 года, протокол №5

Заведующий кафедрой ИЭМС ______/Ю.А. Чаплыгин/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая	программа	согласована	C	Центром	подготовки	K	аккредитации	И	независимой
оценки к	ачества								

Начальник АНОК

/ И.М. Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки ______/ Т.П. Филиппова /