Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович Аннотация рабочей программы дисциплины

Должность: Ректор МИЭТ «Численные методы уравнений математической физики» дата подписания: 31,08.2023 12:33:33

Уникальный программный ключ.

ef5a4fe6ed0ffdf3f1allaпривленноспъ73 (прифильт bea8826Применение математических методов к решению

инженерных и естественнонаучных задач»

Уровень образования - «бакалавриат»

Форма обучения - «очная»

1. Цели и задачи дисциплины

Цель преподавания дисциплины: формирование способности использовать современные численные методы для математического моделирования физических явлений.

Задачи дисциплины: приобретение знаний основных понятий и методов численного решения уравнений математической физики, умений реализовывать современные численные методы решения уравнений математической физики; приобретения опыта моделирования физических процессов.

2. Место дисциплины в структуре ОП

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы. Для изучения дисциплины студент должен владеть знаниями и умениями в области дифференциального и интегрального исчисления, линейной алгебры и численных методов. Понятия и методы дисциплины применяются при математическом моделировании физических явлений и могут быть использованы при прохождении практики и подготовке ВКР.

3. Краткое содержание дисциплины

Приближенный анализ, источники погрешности, корректность. Математическая физика и сеточные методы. Сгущение сетки и контроль точности: методы Ричардсона и Эйткена, Квазиравномерные сетки. Основы теории сеточных методов: аппроксимация, устойчивость, сходимость. Обыкновенные дифференциальные уравнения (ОДУ). Задача Коши. Схемы Рунге-Кутты с 1-4 стадиями; многостадийные схемы. Жесткие системы ОДУ. Неявные методы и схемы Розенброка. Схемы с комплексными коэффициентами. Дифференциально-алгебраические системы. Краевые задачи для ОДУ второго и высоких порядков; линейные инелинейные задачи. Задачи на собственные значения для ОДУ. Линейное уравнение переноса. Схемы бегущего счета, их свойства. Одномерные и многомерные задачи. Квазилинейное уравнение переноса, характер его решений. Ложная сходимость и консервативные схемы. Искусственная вязкость. Одномерное уравнение теплопроводности. Неявные схемы и комплексная схема. Слоистые среды и бикомпактные схемы. Задачи в неограниченной области. Многомерное уравнение теплопроводности. Эволюционно факторизованные схемы. Эллиптическое уравнение. Счет на установление; оптимальный шаг и логарифмический набор шагов. Итерационные методы: усеченный наискорейший спуск и сопряженные градиенты. Одномерное уравнение акустики. Схема "крест" и схема с весами. Двуслойная схема. Многомерное уравнение акустики. Схема "крест" И факторизованная схема Многокомпонентные задачи. Метод расщепления по процессам. Жесткий метод прямых и комплексная схема. Интегральные уравнения. Корректные задачи и сеточные методы. Понятие о некорректных задачах.

Разработчик: доцент каф. ВМ-1, к.ф.м.н. Козлитин И.А.