Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшег ф образования Российской Федерации

Должность: Ректор МИЭТ Дата подписания: 01.09.2023 15:11:42

«Национальный исследовательский университет Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d**Уюсковский инс**титут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физические основы электроники»

Направление подготовки – 11.03.04 «Электроника и наноэлектроника» Направленность (профиль) – «Квантовые приборы и наноэлектроника»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих профессиональных компетенций образовательной программы:

Компетенция ПК- 1 «Способен строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования» сформулирована на основе следующих профессиональных стандартов:

40.040 Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков

Обобщенная трудовая функция: Разработка электрических схем и характеризация стандартных ячеек библиотеки

Трудовые функции: А/01.6 Разработка электрических схем стандартных ячеек библиотеки.

ки.		
Подкомпетенции,	Задачи профессиональной	Индикаторы достижения под-
формируемые в дис-	• •	-
циплине	деятельности	компетенций
ПК-1.ФОЭ «Способен	- анализ научно-	Знать:
строить физические и	технической информации,	- основные электронные свойства
математические мо-	отечественного и зарубеж-	полупроводников, определяю-
дели электронных	ного опыта по тематике ис-	щих рабочие параметры дис-
процессов в полупро-	следования;	кретных полупроводниковых
водниках»	- участие в планировании и	приборов и интегральных микро-
	проведении экспериментов	схем различного функ-
	по заданной методике, об-	ционального назначения;
	работка результатов с при-	Уметь:
	менением современных	- делать количественные оценки
	информационных техноло-	электрических параметров полу-
	гий и технических средств;	проводников при определённых
		условиях;
		Иметь опыт:
		- составления математической
		модели для описания электрон-
		ных процессов в полупровод-
		никах.

Компетенция ПК-2 «Способен аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения» сформулирована на основе следующих профессиональных стандартов:

40.104 «Специалист по измерению параметров и модификации свойств наноматериалов и наноструктур»

Обобщенная трудовая функция: Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур

Трудовые функции: С/01.6 Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур

Подкомпетенции, формируемые в дис- циплине	Задачи профессиональной деятельности	Индикаторы достижения под-компетенций	
ПК-2.ФОЭ Способен	- анализ научно-	Знать:	
определять электро-	технической информации,	- основные физические процес-	
физические парамет-	отечественного и зарубеж-	сы, определяющие концентра-	
ры полупроводнико-	ного опыта по тематике ис-	цию и подвижность носителей	
вых материалов и	следования;	заряда в полупроводниках;	
приборных структур	- участие в планировании и	Уметь:	
по полученным ре-	проведении экспериментов	- вычислять электрические пара-	
зультатам экспери-	по заданной методике, об-	метры полупроводниковых мате-	
ментальных измере-	работка результатов с при-	риалов по наблюдаемым экспе-	
ний	менением современных	риментальным данным;	
	информационных техноло-	Иметь опыт:	
	гий и технических средств;	- обработки экспериментальных	
		данных	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Для её освоения требуются знания, умения и опыт деятельности, приобретаемые студентами при изучении следующих дисциплин: Математический анализ; Физика. Электричество и магнетизм; Физика. Атомная физика и строение вещества; Теория вероятностей и математическая статистика; Квантовая механика.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		J.	L	Ко	нтактная рабо	та	В1	н
Курс	Семестр	Общая трудоём кость (ЗЕ)	Общая трудоём кость (часы)	Лекции (часы)	Практическая подготовка при проведении ла- бораторных ра- бот (часы)	Практические занятия (часы)	Самостоятельна работа (часы)	Промежуточная аттестация
3	5	6	216	32	16	32	100	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Кон	тактная раб	бота	- 8-	
№ и наименование модуля	лекции (часы)	Практическая под- готовка при прове- дении лаборатор- ных работ (часы)	практические за- нятия (часы)	Самостоятельная ра- бота	Формы текущего контроля
1. Строение и электронные свойства полупроводниковых кристаллов	12	_	12	32	Опрос 1 Опрос 2 Сдача практикоориентированного задания
2. Статистика носителей заряда в полупроводниках	14	_	16	36	Опрос 3 Коллоквиум Сдача практикоориентированного задания

3. Аморфные и органические полупроводники, границы раздела	6	-	4	12	Опрос 4
4. Лабораторный практикум	_	16	_	20	Защита лабораторных работ

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание				
1	1	2	Типы конденсированных сред. Симметрия и структура кристал-				
			лов. Определение конденсированного состояния, классификация кон-				
			денсированных сред; геометрическая структура кристаллов, элементы				
			симметрии, решетки Бравэ; типы кристаллических сингоний; кристал-				
			лическая структура основных полупроводников, квазикристаллы				
	2	2	Обратная решетка. Дифракция рентгеновских лучей на кристалле.				
			Кристаллографические координаты, индексы Миллера; дифракция				
			рентгеновских и электронных волн на кристалле, условия дифракции				
			Лауэ и Вульфа-Брэгга, брэгговские плоскости, обратная решетка,				
			структурные и атомные факторы рассеяния.				
	3,4	4	Основы зонной теории твёрдого тела. Адиабатическое и одноэлек-				
			тронное приближения зонной теории. Уравнение Шредингера в перио-				
			дическом потенциале, граничные условия Борна-Кармана, теорема				
			Блоха и блоховская волновая функция. Энергетические зоны, зоны				
			Бриллюэна, число состояний в зоне Бриллюэна; классификация кри-				
			сталлов на металлы, полупроводники и диэлектрики с точки зрения				
			зонной теории. Эффективная масса носителя заряда в кристалле, по-				
			верхность Ферми и уровень Ферми; плотность состояний.				
	5	2	Особенности зонной структуры основных полупроводников. Поня-				
			тие дырки. Особенности зонной структуры полупроводников 4-й груп-				
			пы и соединений A3B5, sp3-гибридизация. Эллипсоиды проводимости.				
			Легкие и тяжелые дырки.				

ные состоя- ния приме- ункция рас- рации элек- ия примес- ги полупро-
ункция рас- рации элек- ия примес-
рации элек-
рации элек-
ия примес-
_
_
ги полупро-
статистики.
примесного
упроводни-
варяда в до-
омпенсиро-
Неравновес-
омбинация.
ень Ферми.
гатического
и. Рекомби-
Іокли-Рида-
положения
непрерыв-
коэффици-
циффузия и сого поля в
поля.
убокие при-
тры. Меха-
льных цен-
дники. Ло-
состояний и

15	2	Свойства поверхности. Поверхность и поверхностные таммовские
		состояния. Энергетические зоны поверхности. Заряд поверхностных
		состояний. Пиннинг уровня Ферми. Работа выхода
16	2	Органические полупроводники. Сопряженные полимеры. Пайер-
		лсовская неустойчивость. Допирование сопряженных полимеров. Со-
		литоны и поляроны

4.2. Практические занятия

№ модуля дисциплины	№ практиче- ского занятия	Объем занятий (часы)	Наименование занятия
1	1	2	Кристаллическая структура твердых тел
	2	2	Обратная решетка. Дифракция рентгеновских лучей на кристалле.
	3,4	4	Метод сильно связанных электронов.
	5	2	2D материалы
	6	2	Функция распределения носителей заряда. Эффективная масса
2	7	2	Собственные полупроводники
	8,9	4	Уравнение электронейтральности.
	10	2	Неоднородные, неравновесные полупроводники
	11	2	Коллоквиум
	12,	4	Диффузионно-дрейфовая модель
	13		
	14	2	Генерация и рекомбинация носителей заряда
3	15	2	Локализованные электронные состояния.
	16	2	Защита практикоориентированногозадания

4.3. Практическая подготовка при проведении лабораторных работ

№ модуля	дисциплины	Ö.	СКОГО ЗАНЯТИЯ Объем занятий		Наименование работы
4		1	4	4	Определение структуры кристаллов с помощью дифракции рентге-
					новских лучей.
		2	4	4	Определение ширины запрещенной зоны полупроводников из изме-
					рений температурной зависимости электропроводности.
		3	4	4	Бесконтактный метод измерения удельного сопротивления полупро-
					водников.
		4	4	4	Определение времени жизни неравновесных носителей заряда в по-
					лупроводниках методом спада фотопроводимости

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1–3	16	Работа с конспектом лекций. Чтение и разбор рекомендованной литературы.
	8	
	8	Изучение дополнительной тематической литературы и Интернетресурсов.
	18	Разбор решенных на семинарах задач. Решение тематических задач
	6	Подготовка к опросам
	12	Подготовка к коллоквиуму
	20	Выполнение практикоориентированного задания
4	4	Подготовка к выполнению лабораторной работы: чтение теоретического
		материала, написание краткого конспекта основных теоретических сведе-
		ний,
	4	Подготовка к выполнению лабораторной работы: изучение схемы экспе-
		риментальной установки, изучение методики выполнения работы
	6	Обработка экспериментальных результатов. Подготовка ответов на по-
		ставленные преподавателем вопросы.
	6	Написание отчёта о проделанной работе. Подготовка к защите лаборатор-
		ной работы.

4.5. Примерная тематика курсовых работ (проектов)

Выполнение курсовых работ (проектов) не предусмотрено

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модули 1–3

- 1. Теоретический материал по тематике лекций и семинарских заданий
- 2. Методические указания по выполнению практико-ориентированного задания
- 3. Список вопросов к коллоквиуму
- 4. Список учебной литературы Модуль 4 «Лабораторный практикум»
- 1. Описания лабораторных работ
- 2. Список контрольных вопросов

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература:

- 1. Ансельм А. И. Введение в теорию полупроводников : Учеб. / А.И. Ансельм. 4-е изд., стер. СПб. : Лань, 2016. 624 с. URL: https://e.lanbook.com/book/71742 (дата обращения: 17.12.2020). ISBN 978-5-8114-0762-0 .
- 2. Горбацевич А.А. Физика полупроводников: Учеб. пособие / А.А. Горбацевич, М.Н. Журавлев; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2017. 136 с. Имеется электронная версия издания. ISBN 978-5-7256-0867-0.
- 3. Ашкрофт Н. Физика твердого тела : В 2-х т.: Пер. с англ. Т. 1 / Н. Ашкрофт, Н. Мермин; Ред. пер. М.И. Каганов. М. : Мир, 1979. 399 с.
- 3. Ашкрофт Н. Физика твердого тела : В 2-х т.: Пер. с англ. Т. 2 / Н. Ашкрофт, Н. Мермин; Ред. пер. М.И. Каганов. М. : Мир, 1979. 422 с.
- 4. Киттель Ч. Введение в физику твердого тела : [учебное руководство] / Ч. Киттель. 2-е изд., стер. ; Перепечатка с изд. 1978 г. М. : Альянс, 2014. 792 с.

- 5. Ю П. (Yu Peter). Основы физики полупроводников = Fundamentals of Semiconductors. Physics and Materials Properties / Peter Yu, Manuel Cardona Springer, 2002 : Пер. с англ. / Ю П., М. Кардона. 3-е изд. М. : Физматлит, 2002. 560 с. : ил. ISBN 5-9221-0268-0 6. Бонч-Бруевич В.Л. Физика полупроводников : Учеб. пособие для вузов / В.Л. Бонч-Бруевич, С.Г. Калашников. М. : Наука, 1990. 685 с.
- 7. Бонч-Бруевич В. Л. Сборник задач по физике полупроводников / Бонч-Бруевич В. Л., Звягин И. П., Карпенко И. В., Миронов А. Г. // М.: Наука, 1987. 144 с.

Периодические издания:

- 1. ФИЗИКА И ТЕХНИКА ПОЛУПРОВОДНИКОВ = SEMICONDUCTORS / РАН, Физикотехнический институт имени А.Ф. Иоффе; Гл. ред. Р.А. Сурис. СПб. : Наука, 1967 . URL: http://journals.ioffe.ru/ftp/ (дата обращения: 20.10.2020). Режим доступа: свободный.
- 2. УСПЕХИ ФИЗИЧЕСКИХ НАУК: Научный журнал / Физический институт им. П. Н. Лебедева РАН, Редакция журнала УФН. М.: РАН, 1918 . URL:http://ufn.ru/ (дата обращения: 20.10.2020). Режим доступа: свободный
- 3. ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ : Научный журнал / РАН, Ин-т физических проблем им. П.Л. Капицы. М. : РАН, Наука, 1873 . URL: http://www.jetp.ac.ru/cgi-bin/r/index (дата обращения: 20.10.2020). Режим доступа: свободный
- 4. ПИСЬМА В ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ = JETP Letters / Российская академия наук, Институт физических проблем им. П. Л. Капицы РАН. М. : ИКЦ Академкнига, 1965 . URL: http://www.jetpletters.ac.ru/ (дата обращения: 20.10.2020). Режим доступа: свободный
- 5. JOURNAL OF APPLIED PHYSICS / American Institute of Physics. USA : AIP, [б.г.]. URL: http://scitation.aip.org/content/aip/journal/jap (дата обращения: 20.10.2020). Режим доступа: по подписке МИЭТ.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОН-НЫХ СПРАВОЧНЫХ СИСТЕМ

1. NSM Archive. Characteristics and Properties = Новые полупроводниковые материалы: Характеристики и свойства: Электронный архив / webmaster Алексей Толмачев // ФТИ им. А.Ф. Иоффе РАН : [сайт]. – Москва, 1998-2001. -

URL: http://www.ioffe.ru/SVA/NSM/rintroduction.html (дата обращения: 27.11.2020).

- 2. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 27.11.2020). Режим доступа: для авториз. пользователей МИЭТ
- 3. Web of Science [v.5.35]: сайт. URL: http://apps.webofknowledge.com (дата обращения: 27.11.2020).
- 4. ФИПС: Информационно-поисковая система: сайт. Москва, 2009 . URL: https://www1.fips.ru/elektronnye-servisy/informatsionno-poiskovaya-sistema/index.php (дата обращения: 27.11.2020)
- 5. MATLAB : [раздел сайта] // MathWorks : [сайт]. 1994-2020. -

URL: https://www.mathworks.com/help/matlab/index.html (дата обращения: 27.11.2020)

- 6. WebCSD // The Cambridge Crystallographic Data Centre (CCDC) : [сайт]. URL: https://www.ccdc.cam.ac.uk/structures/ (дата обращения: 27.11.2020). Режим доступа: для авториз. пользователей МИЭТ
- 7. APS Physics: [сайт] / American Physical Society Sites. URL: https://www.aps.org/ (дата обращения: 20.10.2020). Режим доступа: свободный.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС http://orioks.miet.ru.

В ходе реализации обучения используются технологии смешанного обучения.

Применяется модель смешанного обучения «перевернутый класс». Учебный процесс начинается с постановки проблемного задания, для выполнения которого студент должен самостоятельно ознакомиться с материалом, размещенным в электронной среде. В аудитории проверяются и дополняются полученные знания с помощью дискуссий и решения практических задач. Работа поводится по следующей схеме: СРС (онлайновая предаудиторная работа с использованием внешнего или внутреннего ресурса) - аудиторная работа (семинар с представлением и обсуждением выполненной работы, решение практических задач с опорой на результаты самостоятельной работы) - обратная связь с обсуждением и подведением итогов.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя, zoom-консультации.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в системе ОРИОКС

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень про- граммного обеспе- чения
Учебная аудитория	Учебная доска	Не требуется
Лаборатория физи-	Персональные компьютеры	Операционная сис-
ки конденсирован-	Высокочастотный анализатор полупровод-	тема Microsoft
ного состояния	ников	Windows от 7 версии
(ауд. 4347)	Генератор импульсный Agilent 33220A	и выше, Microsoft
	Измеритель добротности 50 кгц-35мгц ВМ-	Office Professional
	560	Plus или Open Office,
	Комплект из 6-ти интерфейсных устройств	браузер (Firefox,
	PCI-GPIB NI-488.2	Google Crome);
	Осцилограф 2 канальный 100МГц TDS 2012В	Acrobat reader DC
	СБ	
	E6550/iG33/1024MB/250G/CF7300/266/DESK TOP/ms	
	Вольтметр Agilent 34405A	
	Вольтметр Agilent 34411A	
	Вольтметр универсальный В7-30	
	Измеритель RCL	
	Измеритель добротности ВМ-560	
	Измеритель цифровой Е7-12	
	Источник питания Agilent E3634A	
	Источник питания 0-30 B, 0-5A GPR-3060D	
	Источник питания 0-30 В, 0-3А Б5-47	
	Источник питания Agilent E3634A	
	Вольтметр Agilent 34411A	
	Уст. изм. эфф. Холла HMS-5000/055 Т	
	Учебно-лабораторный стенд для измерения	
	электрофизических параметров полупровод-	
	никовых материалов	
	Цифровой мультиметр Agilent 34405A	
	Программный комплес по моделированию	
	элмаг. характеристик.базовых элем.	
	Источник питания Agilent E3645A	
	Источник питания Agilent 6645A	

Помещение для са-	Компьютерная техника с возможностью	Операционная сис-
мостоятельной ра-	подключения к сети «Интернет» и обеспече-	тема Microsoft
боты обучающихся	нием доступа в электронную информацион-	Windows от 7 версии
	но-образовательную среду МИЭТ	и выше, Microsoft
		Office Professional
		Plus или Open Office,
		браузер (Firefox,
		Google Crome);
		Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции ПК-1.ФОЭ «Способен строить физические и математические модели электронных процессов в полупроводниках».
- 2. ФОС по подкомпетенции ПК-2.ФОЭ Способен определять электрофизические параметры полупроводниковых материалов и приборных структур по полученным результатам экспериментальных измерений.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Изучение материала дисциплины происходит во время лекционных занятий, семинарских занятий, лабораторных работ и в ходе самостоятельной работы. Посещение лекций, семинаров и лабораторных работ обязательно.

Дополнительной формой аудиторной работы являются консультации. Консультации проводятся преподавателем еженедельно, их посещать необязательно.

Цель лекций, семинаров – обучение базовым знаниям и умениям. Освоение дисциплины на повышенном уровне в значительной степени осуществляется студентом самостоятельно. Лектор предоставляет студентам все необходимые для этого методические материалы, а также проводит для желающих еженедельные консультации. Тема консультации, как правило, повторяет тему лекции, которая читалась на неделе, предшествующей консультации.

На семинарах, проводимых в диалоговом режиме, студенты получают специальные знания, умения и опыт деятельности посредством разбора и решения модельных задач. Модельная задача представляет собой упрощённое представление изучаемых процессов, допускающее относительно простую математическую формализацию. Характерной особенностью семинарского занятия является обсуждение со студентами применимости физических законов, математических выкладок и возникающих в процессе решения задачи сложностей.

Для приобретения опыта деятельности по будущей профессии, во второй половине семестра для самостоятельно разбора и изучения выдаётся практикоориентированное задание. Задание направленно на работу с профессиональными базами данных и документацией по современным приборно-технологическим САПР (Sentaurus TCAD). Вначале изучается документация и составляется краткое описание применяемых в САПР математических моделей. Далее, в соответствии с заданием, обоснованно выбирается набор моделей для решения задачи расчёта рабочих характеристик определённого полупроводникового прибора. Результаты проверяются преподавателем. Как показывает практика, наибольшую трудность в современных профессиональных задачах и кейсах представляет формализация условия, т. е. перевод информации с русского языка на язык математических законов, формул и отношений. Поэтому необходимо научить студентов отбрасывать несущественные детали условия, пользоваться упрощенными моделями и схемами, опираться на известные физические законы.

Выполнению лабораторной работы предшествует предварительная подготовка, в ходе которой необходимо изучить теоретический материал по тематике лабораторной работы и разобрать схему проведения эксперимента. К выполнению работы допускается студент, продемонстрировавший знания объекта исследований, методики проведения экспериментов и имеющий заготовленные заранее формы представления экспериментальных результатов. Лабораторные работы проводятся, как правило, в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения исследований и при защите полученных результатов. По окончанию каждой лабораторной работы проводится обсуждение и защита результатов выполнения работы с каждым студентом.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре и сдача экзамена.

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/ .

РАЗРАБОТЧИКИ:

Доцент каф. КФН, к. ф.-м. н.

/Журавлёв М. Н. /

Рабочая программа дисциплины «Физические основы электроники» по направлению подготовки 11.03.04 «Электроника и наноэлектроника», направленности (профилю) «Квантовые приборы и наноэлектроника» разработана на кафедре квантовой физики и наноэлектроники (КФН) и утверждена на заседании кафедры 17 декабря 2020 года, протокол № 12

Заведующий кафедрой КФН

/A. А. Горбацевич/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

/ И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки _

____/ Т.П.Филиппова /