Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович

МИНОБРНАУКИ РОССИИ

Должность: Ректор МИЭТ Дата подписания: 01.09.2023 15:20:12

Уникальный программный ключ:

«Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d**₹Мосисавский**бинститут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

11 m 06

2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Объектно-ориентированное программирование»

Направление подготовки – 11.03.04 «Электроника и наноэлектроника» Направленность (профиль) - «Автоматизация проектирования изделий наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-2 «Способен аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения» сформулирована на основе профессионального стандарта: 06.001 «Программист».

Обобщенная трудовая функция: <u>D</u>. Разработка требований и проектирование программного обеспечения.

Трудовая функция: D/02.6 Разработка технических спецификаций на программные компоненты и их взаимодействие.

Подкомпетенции,	2	и		
формируемые в	Задачи профессиональной	Индикаторы достижения		
дисциплине	деятельности	компетенций/подкомпетенций		
ПК-2.ООП - Способен	Разработка ПО для	Знания методик разработки		
аргументировано	моделирования и	программных средств для		
выбирать и	исследования приборов и	исследований параметров и		
реализовывать на	схем	характеристик приборов, схем с		
практике эффективные		применением объектно-		
программные средства		ориентированного		
экспериментального		программирования		
исследования		Умения разрабатывать		
параметров и		программные средства для		
характеристик		исследований характеристик		
приборов, схем		электронных приборов, схем с		
электроники и		применением объектно-		
наноэлектроники		ориентированного		
различного		программирования		
функционального		Опыт применения объектно-		
назначения		ориентированного		
		программирования для		
		разработки программных		
		средств исследования		
		характеристик схем, устройств		
		электроники и наноэлектроники		
		различного функционального		
		назначения		

Компетенция ПК-5 «Способен разрабатывать функциональные блоки, схемы с использованием современных лингвистических средств и применять их при

проектировании цифровых и аналоговых систем на системном, функциональном, логическом и физическом уровнях» сформулирована на основе профессионального стандарта: 06.001 «Программист».

Обобщенная трудовая функция: \underline{D} . Разработка требований и проектирование программного обеспечения.

Трудовые функции: <u>D/03.6</u> Проектирование программного обеспечения.

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций/подкомпетенций
ПК-5.ООП Способен применять лингвистические средства языка С++ для разработки алгоритмов, применяемых в САПР	Проектирование схем с использованием САПР	Знания базовых понятий объектноориентированного программирования, применяемых при разработке САПР Умения разрабатывать объектноориентированный код Опыт применения языка С++ для разработки алгоритмов, применяемых в САПР

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования: сформированность компетенций, определяющих готовность применять основные концепции, принципы, теории и факты, связанные с информатикой, сформированных в дисциплинах «Информатика» «Программирование».

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контан	стная раб	ота		
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	2	72	16	32	-	24	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контакти	ая работа		R	
№ и наименование модуля	Лекции	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
1. Инкапсуляция и наследование	8	16	-	12	Защита лабораторных работ 1-4. Контрольная работа 1.
2. Полиморфизм и абстракция	8	16	-	12	Защита лабораторных работ 5-8. Контрольная работа 2.

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции)	(часы)	Краткое содержание		
1	1	2		Базовые понятия ООП. Класс, объект. Инкапсуляция. Доступ к элементам класса. Друзья класса.		
1	2	2		Перегрузка функций. Аргументы по умолчанию. Перегрузка операторов.		
1	3	2		Иерархия классов, наследование. Доступ к элементам класса при наследовании.		
1	4	2	36	Конструкторы и деструкторы классов. Поведение конструкторов и деструкторов при наследовании		
2	5	2		Виртуальные функции. Указатели и ссылки на базовый и производный классы.		
2	6	2		Полиморфные типы. Абстрактные типы.		
2	7	2		Раннее и позднее связывание объекта и функции. Преимущества и недостатки раннего и позднего связывания		
2	8	2		Основы обработки исключительных ситуаций: генерация, перехват и обработка исключения. Дополнительные возможности: перехват всех исключений, ограничения на исключения, повторная генерация исключения.		

4.2. Практические занятия

Не предусмотрены

4.3. Лабораторные работы

№ модуля	Ме лабораторной	работы Объем занятий	Наименование работы	
1	1	4	Динамические структуры данных.	
1	2	4	Текстовые и двоичные потоки.	
1	3	4	Классы. Доступ к элементам класса. Дружественные функции.	
1	4	4	Перегрузка операторов. Перегрузка функций.	
2	5	4	Простое наследование. Конструкторы и деструкторы при наследовании.	
2	6	4	Закрытое и защищенное наследование.	
2	7	4	Виртуальные функции	
2	8	4	Шаблоны	

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС	
	2	Изучение материалов для СРС и рекомендованной литературы по	
1		теме «Базовые понятия языка С++» (простые типы данных,	
		структурные операторы).	
1	2	Теоретическая подготовка к лабораторному занятию №1,2:	
1		Написание конспекта лабораторного задания;	
		Практическая подготовка к лабораторному занятию №1,2: решение	
		варианта задания; создание схемы алгоритма программы.	
1	2 Теоретическая подготовка к лабораторному занятию №3,4:		
1		Написание конспекта лабораторного задания;	
1	2	Практическая подготовка к лабораторному занятию №3,4: решение	
		варианта задания; создание схемы алгоритма программы.	
1	2	Подготовка к Контрольной работе 1	
2	2	Изучение материалов для СРС и рекомендованной литературы	
2	2	Теоретическая подготовка к лабораторному занятию №5,6:	
2		Написание конспекта лабораторного задания;	

2	2	Практическая подготовка к лабораторному занятию №5,6: решение
		варианта задания; создание схемы алгоритма программы.
2	2	Теоретическая подготовка к лабораторному занятию №7,8:
Написание конспекта лабораторного задания;		Написание конспекта лабораторного задания;
2	2	Практическая подготовка к лабораторному занятию №7,8: решение
2		варианта задания; создание схемы алгоритма программы.
2	2	Подготовка к Контрольной работе 2

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модули 1-2. Материалы для изучения в рамках подготовки к занятиям.

- 1. Теоретические сведения (лекционные материалы)
- 2. Методические указания по выполнению лабораторных работ

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

- 1. Ашарина, И.В. Объектно-ориентированное программирование в С++: лекции и упражнения. [Электронный ресурс]: учебное пособие. Электрон. дан. М.: Горячая линия-Телеком, 2012. 319 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5115 Загл. с экрана.
- 2. Бабушкина, И.А. Практикум по объектно-ориентированному программированию [Электронный ресурс] : учебное пособие / И.А. Бабушкина, С.М. Окулов. Электрон. дан. М. : «Лаборатория знаний» (ранее «БИНОМ. Лаборатория знаний»), 2012. 372 с. Ре-жим доступа: http://e.lanbook.com/books/element.php?pl1 id=8781 Загл. с экрана.
- 3. Подбельский В.В. Язык Си++: Учеб. пособие. 5-е изд. М.: Финансы и статистика, 2006г.
- 4. Дорогова Е.Г. Основы программирования на языке С [Текст] : Учеб. пособие / Е. Г. Дорогова ; М-во образования и науки РФ, Федеральное агентство по образованию, МГИ-9T(TY). М. : МИЭТ, 2009. 192 с. Имеется электронная версия издания. ISBN 978-5-7256-0534-1.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Стандарты ЕСПД // Профессиональная разработка технической документации URL: https://www.swrit.ru/gost-espd.html (дата обращения: 19.11.2020).ЭБС издательства Лань http://e.lanbook.com/
- 2. Научная электронная библиотека eLIBRARY.RU URL: http://elibrary.ru/ (дата

обращения: 01.11.2020).

- 3. Единое окно доступа к информационным ресурсам URL: http://window.edu.ru/catalog/ (дата обращения: 19.11.2020).
- 4. Национальный открытый университет ИНТУИТ URL: http://www.intuit.ru/ (дата обращения: 19.11.2020).

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС(http://orioks.miet.ru).

Применяются следующие модели обучения:

- «Расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях с последующим самостоятельным выполнением индивидуального задания в мини-группах и индивидуально. Работа поводится по следующей схеме: аудиторная работа (обсуждение с отработкой типового задания с последующим обсуждением) СРС (онлайновая работа с использованием онлайн-ресурсов, в т.ч. для организации обратной связи с обсуждением, консультированием, рецензированием с последующей доработкой и подведением итогов);
- «Перевернутый класс» учебный процесс начинается с постановки проблемного задания, для выполнения которого студент должен самостоятельно ознакомиться с материалом, размещенным в электронной среде. Работа поводится по следующей схеме: СРС (онлайновая предаудиторная работа с использованием внешнего курса) аудиторная работа (обсуждение с представлением презентаций с применением на практическом примере изученного материала) обратная связь с обсуждением и подведением итогов.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, Skype, Zoom.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы: шаблоны и примеры оформления выполненной работы, разъясняющий суть работы видеоролик, требования к выполнению и оформлению результата.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы*	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Аудитория с комплектом мультимедийного оборудования	OC Microsoft Windows, Microsoft Office Professional Plus, Google Chrome, Acrobat reader DC

Компьютерный класс	1. ПЭВМ InWin EAR035(Intel	OC Microsoft Windows,
	Pentium G2140);	Microsoft Office
	2. Клавиатура Logitech K120	Professional Plus, Google
	USB;	Chrome, Acrobat reader DC
	3. Манипулятор мышь	
	Logitech B110;	-
	4. Монитор 22» Samsung	
	S22B370H;	
	5. Установочный комплект	
	Microsoft Win7 Pro SP1	
Помещение для	Компьютерная техника с	OC Microsoft Windows,
самостоятельной работы	возможностью подключения	Microsoft Office
обучающихся	к сети «Интернет» и	Professional Plus, Google
	обеспечением доступа в	Chrome, Acrobat reader DC
	ОРИОКС	

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по подкомпетенциям:

- 1. ПК-2.ООП Способен аргументировано выбирать и реализовывать на практике эффективные программные средства экспериментального исследования параметров и характеристик приборов, схем электроники и наноэлектроники различного функционального назначения;
- 2. ПК-5.ООП Способен разрабатывать и применять при проектировании цифровых и аналоговых систем модули САПР.

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://www.orioks.miet.ru/).

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Изучение дисциплины предполагает следующие виды занятий: лекции, лабораторные работы. Каждый студент на лабораторной работе получает индивидуальное задание. Обучающиеся находят необходимый теоретический материал, который поможет им в решении индивидуального задания. В качестве источника знаний выступают: печатные издания, общественные сети (Интернет), лекционные занятия, консультации с преподавателем, консультации с другими учащимися. Качество и срок выполнения лабораторных работ влияют на текущую успеваемость, проставляемую преподавателями в ведомости. Завершает курс дифференцированный зачет, на котором студент показывает свои успехи в освоении теории практики курса.

Методика проведения лабораторных занятий преследует следующие цели:

- организация самостоятельной работы студентов;

- стремление студентов к качественному освоению изучаемого материала с целью повышения своего рейтинга;
- формирование учебной автономности студента, его ответственности за процесс и результаты обучения;
- создание условий, при которых студенты самостоятельно приобретают новые знания из разных источников;
- научить пользоваться приобретёнными знаниями для решения познавательных и практических задач;
 - переход от преимущественной активности преподавателя к активности учащихся;
 - приобретение коммуникативных умений, работая в группах;
- развить у студентов исследовательские умения (умения выявления проблем, сбора информации, наблюдения, проведения эксперимента, анализа, построения гипотез, обобщения и др.);
 - научить самостоятельно оценивать ход и результат учебного процесса.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 60 баллов) и зачет с оценкой (до 40 баллов).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступны в системе ОРИОКС, http://orioks.miet.ru/.

Мониторинг успеваемости студентов проводится в течение семестра трижды: по итогам 1-8 учебных недель, 9-12 учебных недель, 13-18 учебных недель.

Doful

РАЗРАБОТЧИК:

Доцент института СПИНТех, к.т.н., доцент

/Е.Г. Дорогова/

Рабочая программа дисциплины «Объектно-ориентированное программирование» по направлению подготовки 11.03.04 «Электроника и наноэлектроника», профиль «Автоматизация проектирования изделий наноэлектроники», разработана институтом СПИНТех и утверждена на заседании УС института 24 ноября 2020 года, протокол № 3.