Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович

Должность: Ректор МИЭТ

Дата подписания: 01.09.2023 15:06:06

Уникальный программный ключ: Министерство науки и высшего образования Российской Федерации

ef5a4fe6ed0ffdf3f1aФeдeральноедгооударственнов автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор получебной работе

_ И.Г. Игнатова

2020г.

 $M.\Pi.^{\circ}$

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Встраиваемые системы реального времени для телекоммуникационных систем»

Направление подготовки - 11.04.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) - «Информационные сети и телекоммуникации»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-1 «Способен использовать современные достижения науки и передовые инфокоммуникационные технологии, методы проведения теоретических и экспериментальных исследований в научно-исследовательских работах в области ИКТиСС, ставить задачи исследования, выбирать методы экспериментальной работы с целью совершенствования и созданию новых перспективных инфокоммуникационных систем» **сформулирована на основе профессионального стандарта** - 06.018 «Инженер связи (телекоммуникаций)»

Обобщенная трудовая функция DПланирование и оптимизация развития сети связи **Трудовая функция** D/02.7Формирование плана развития сети связи

Подкомпетенции,	Задачипрофессиональн	Индикаторыдостиженияподкомпет
формируемые в	ойдеятельности	енций
дисциплине		
ПК-1.ВСРВ	Разработка физических и	Знание: терминологии и архитектуры
Способен к разработке	математических моделей	встраиваемых систем реального
и анализу вариантов	исследуемых процессов,	времени на базе ЦСП для ЦОС в
встраиваемых систем	явлений и объектов,	ТКС., алгоритмов обработки
реального времени	относящихся к	сигналов в них.
(ВС_РВ) на базе	профессиональной сфере	Умение: использовать полученные
цифровых сигнальных		знания при построении встраиваемых
процессоров (ЦСП) для		систем реального времени для ЦОС.
цифровой обработки		Опыт деятельности: в разработке и
сигналов (ЦОС) в		отладке основных узлов ВС_РВ на
телекоммуникационны		базе ЦСП с использованием
х системах (ТКС).		предназначенного для этого
		современного инструментария.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы (является элективной).

Входными требованиями к дисциплине являются знания алгоритмов цифровой обработки сигналов (ЦОС), основ программирования, основ цифровой схемотехники, схемотехники телекоммуникационных устройств, принципов цифро-аналогового и аналогоцифрового преобразования.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контактная работа				
	Курс	Семестр	Общая трудоёмкость (ЗЕ)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
Ī	2	3	144	-	16	32	60	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			ъ		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Введение в теорию						
построения						
встраиваемых систем	-	-	4	4	Письменный опрос	
ЦОСреального						
времени						
2.Программное и					Защита проектно-	
аппаратное обеспечение			28	40	ориентированного	
встраиваемых систем			20	40	домашнего задания	
реального времени					Письменный опрос	
3. Примеры реализации						
алгоритмов ЦОС в						
цифровых сигнальных		16	_	16	Защита лабораторных работ	
процессорах(ЦСП)		10		10	Summira succeptification purchase	
Blackfin						

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия	
1	1,2	4	Введение в теорию построения встраиваемых систем ЦОС	
			реального времени	
	3,4	4	Архитектура ЦСП. Вычислительные устройства ЦСП.	
	5,6	4	Система памяти ЦСП. Прямой доступ в память.	
	7,8	4	Организация прерываний в ЦСП.	
	9, 10	4	Методы адресации в ЦСП. Устройства генерации адреса.	
2			Организация циклических буферов.	
2	11,12	4	Распределение ресурсов и оптимизация кодов при реализации	
			систем ЦОС на базе ЦСП.	
	13,14	4	Методы разработки и отладки встраиваемых систем ЦОС на базе	
			ЦСП.	
	15,16	4	Защита проектно-ориентированного домашнего задания.	

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы	
3	1	4	Ознакомление с циклом разработки программного обеспечения для сигнального процессора ADSP-BF537 Blackfin. Приобретение	
			начальных навыков работы с аппаратными и программными	
			средствами отладочной платы ADSP-BF537 EZ-KIT LITE в	
			графической среде разработки VisualDSP++.	
3	2	4	Изучение работы прерывания, флагов общего назначения и режима	
			пониженного потребления процессора Blackfin-537. Работа с часами	
			реального времени.	
3	3	4	Изучение работы синхронного последовательного порта ЦСП ADSP-	
			BF537 с аудиокодаками и режима прямого доступа в память на	
			отладочной плате ADSP-BF537 EZ-KIT LITE.	
3	4	4	Реализация КИХ-фильтра на базе отладочного модуля ADSP-BF537	
			EZ-KIT LITE.	

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объемзанятий (часы)	Вид СРС
1	2	Подготовка к практическим занятиям
1	2	Подготовка к письменному опросу по теории
	2 Подготовка к письменному опросу по теории	
2	8	Подготовка к практическим занятиям
	30	Выполнение проектно-ориентированного домашнего задания
	8	Подготовка к лабораторным работам 1-4: изучение методических
3	O	пособий по лабораторным работам.
	8	Подготовка к защите лабораторных работ 1 -4.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, https://orioks.miet.ru/moodle/course/):

Модуль 1.Введение в теорию построения встраиваемых систем ЦОС реального времени

- материалы для подготовки к практическим занятиям: тексты семинаров, презентации семинаров, материалы курса в Moodle
- материалы и учебная литература по дисциплине для подготовки к письменному опросу

Модуль 2. Программное и аппаратное обеспечение встраиваемых систем реального времени

- материалы и учебная литература по дисциплине для подготовки к письменному опросу
- материалы для подготовки к практическим занятиям: тексты семинаров, презентации семинаров, материалы курса в Moodle
- материалы для выполнения проектно-ориентированного домашнего задания

Модуль 3.Примеры реализации алгоритмов ЦОС в цифровых сигнальных процессорах (ЦСП) Blackfin

 материалы для подготовки к лабораторным работам №1-4: методические пособия по лабораторным работам курса

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Солонина А.И. Алгоритмы и процессоры цифровой обработки сигналов: Учеб. пособие / А.И. Солонина, Д.А. Улахович, Л.А. Яковлев. СПб.: БХВ-Петербург, 2015. 461 с. URL: https://znanium.com/catalog/product/939957 (дата обращения: 21.12.2020). ISBN 978-5-9775-1449-1.
- 2. Смит С. Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников : Пер. с англ.. М. : ДОДЭКА-ХХІ, 2011. 720 с. URL: https://e.lanbook.com/book/60986 (дата обращения: 21.12.2020). ISBN 978-5-94120-145-7.
- 3. Плетнева И.Д. Проектирование встроенных систем ЦОС для телекоммуникаций : Учеб. пособие по курсовому проектированию М. : МИЭТ, 2011. 132 с.- ISBN 978-5-7256-0627-0.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. ФГУП ВНИИФТРИ: научно-исследовательский институт физико-технических и радиотехнических измерений: сайт. URL: http://www.vniiftri.ru (дата обращения: 21.12.2020). Режим доступа: свободный.
- 2. Scopus: экспертно кураторская база данных рефератов и цитат: сайт. Elsevier, 2020. URL: http://www.scopus.com (дата обращения: 21.12.2020).
- 3. eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 21.12.2020). Режим доступа: для зарегистрированных пользователей.
- 4. AnalogDevices: сайт. https://www.analog.com/ru (дата обращения: 21.12.2020). Режим доступа: свободный.
- 5. IEEE/IET ElectronicLibrary (IEL) [Электронный ресурс] = IEEE Xplore : Электронная библиотека. USA ; UK, 1998. URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения 21.12.2020). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"
- 6. Международный союз электросвязи: сайт. URL: https://www.itu.int/ru/Pages/default.aspx (дата обращения: 21.12.2020)
- 7. The 3rd Generation Partnership Project (3GPP): сайт. URL: https://www.3gpp.org/ (датаобращения: 21.12.2020)

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, основанное на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде ОРИОКС.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС:

Лекции по дисциплине «Встраиваемые системы реального времени для телекоммуникационных систем» (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем») 2020 г.

Методические пособия по лабораторным работам 1-4 (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»), 2020 г.

EmbeddedMediaProcessing, Chapters 1, 2, 5, (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»)

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», чат в Moodle ОРИОКС.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние электронные ресурсы** в формах видеоконференций, электронных материалов в MOODLe, тестирования в ОРИОКС и MOODLe.

При проведении занятий и для самостоятельной работы используются внешние электронные компоненты сервисов:

- 1. Blackfin Processors: Manuals // Analog Devices [сайт]. 2020. URL: https://www.analog.com/en/products/landing-pages/001/blackfin-manuals.html(дата обращения: 21.12.2020)
- 2. Youtube

Мастер-класс "Начало работы с VisualDSP++" (части 1, 2)

https://www.youtube.com/watch?v=kB1KdBeN-go&t=5s(дата обращения: 21.12.2020)

https://www.youtube.com/watch?v=kB1KdBeN-go&t=5s (дата обращения: 21.12.2020)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы*	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Компьютерный класс	Компьютеры, Отладочные модули ADSP- BF537 EZ-KITLITE. Контрольно-измерительные приборы (осциллографы, генераторы низких частот Г3-121)	Интегрированная среда разработки VisualDSP++, MATLAB.

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенцииПК-1.ВСРВ«Способен к разработке и анализу вариантов встраиваемых систем реального времени (ВС_РВ) на базе цифровых сигнальных процессоров (ЦСП) для цифровой обработки сигналов (ЦОС) в телекоммуникационных системах (ТКС)».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Практические занятияпроводятся в мультимедийной аудитории в виде презентаций и обсуждения контрольных вопросов.

По окончании изучения теоретического материала модулей 1 и 2проводится оценка полученных студентами знаний в виде письменных опросов по теории (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем» Письменный опрос https://orioks.miet.ru/moodle/course/view.php?id=357#section-4).

Выполнение лабораторных работ являются обязательными и напрямую влияют на итоговую оценку студента.

Подготовка к лабораторным работам предполагает изучение методических пособий по лабораторным работам в ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»https://orioks.miet.ru/moodle/course/view.php?id=357#section-3.

Для этого предусмотренычасы СРС.

Оценка знаний и умений, полученных в результате выполнения лабораторных работ, осуществляется при их защите. Защита лабораторных работ проводится в виде контроля индивидуальных заданий, выполненных студентом самостоятельно после выполнения лабораторного задания, и в виде тестов в ОРИОКС.

В дисциплине предусмотрено выполнение проектно-ориентированного задания, направленного на приобретение опыта деятельности в реализации простейших систем ЦОС для телекоммуникаций на базе ЦСП. Индивидуальное задание для выполнения проектно-ориентированного задания студент может получить в любой момент (см.ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем») https://orioks.miet.ru/moodle/course/view.php?id=357#section-4), но необходимый объём знаний для выполнения будет сформирован только после 4-го практического занятия и выполнения ЛР№3.

Для защиты проектно-ориентированного задания студент должен:

- представить пояснительную записку, содержащую:

- а)краткое описание используемого устройства внешней периферии;
- б) схему электрическую интерфейса ЦСП с периферийным устройством согласно заданию;
- в) временную диаграмму обмена данными между ЦСП и устройством внешней периферии
- г) обоснование выбора временных параметров обмена данными между заданными устройствами;
- уметь ответить на вопросы преподавателя в рамках задания. Формирование итоговой оценки производится согласно разделу 11.2.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме максимум 70 баллов) и сдача экзамена (максимум 30 баллов). По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий приведены ниже в таблице (см. также журнал успеваемости на ОРИОКС, http://orioks.miet.ru/).

Мониторинг успеваемости студентов проводится в течение семестра после окончания каждого контрольного мероприятия (одна неделя после окончания контрольного мероприятия дается на формирование, проверку, получение и исправление комментариев к выполненной работе).

РАЗРАБОТЧИКИ:

		SA,0	
Доцент кафедры ТКС, к.т.н.	1	Mes	/И.Д. Плетнева/

Рабочая программа дисциплины «Встраиваемые системы реального времени дл
телекоммуникационных систем» по направлению подготовки 11.04.0
«Инфокоммуникационные технологии и системы связи», направленности (профилю
«Информационные сети и телекоммуникации» разработана на кафедре ТКС и утверждена н
заседании кафедры
Заведующий кафедрой ТКС/А.А. Бахтин/
ЛИСТ СОГЛАСОВАНИЯ
Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки
качества
Начальник АНОК/ И.М.Никулина /
Рабочая программа согласована с библиотекой МИЭТ
Директор библиотеки/ Т.П.Филиппова /