Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александировничестерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ деральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 15:29:41 «Национальный исследовательский университет

«Национальный исследовательский университет Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f7**%М%€М8В€ЗМЙЬВМЮ**ритут электронной техники»

УТВЕРЖДАЮ

Проректор по жебиой работе

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Моделирование технологических процессов и наноразмерных структур»

Направление подготовки - 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) – «Проектирование и технология устройств интегральной наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-2. "Готов определять цели, осуществлять постановку задач проектирования электронных приборов, схем и устройств различного функционального назначения, подготавливать технические задания на выполнение проектных работ" сформулирована на основе профессионального стандарта 40.040 «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков»

Обобщенная трудовая функция D «Разработка электрических схем, характеризация сложнофункциональных блоков (СФ-блоков)»

Трудовая функция D/01.7 «Разработка электрической принципиальной схемы СФ-блока»

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения компетенций/подкомпетенций
ПК-2.МТПНРС	Разработка физических и	Знать: методы численного
Способен исследовать	математических моделей,	моделирования наноразмерных
характеристики	компьютерное	элементов интегральных схем.
элементов	моделирование	Уметь: рассчитывать
интегральной	исследуемых физических	электрические характеристики
наноэлектроники с	процессов, приборов, схем	наноразмерных КМОП-структур
помощью средств	и устройств, относящихся к	и биполярных структур.
приборно-	профессиональной сфере	Опыт деятельности:
технологического		использование средств
моделирования		приборно-технологического
		моделирования для расчета
		влияния конструкции
		наноразмерных приборов на их
		электрические характеристики.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы, является элективной.

Входные требования к дисциплине: знание основ технологии ЭКБ, компьютерных технологий в научных исследованиях, технического английского языка.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контакт	гная работа			
Kvpc	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	2	2	72	-	16	16	40	3a

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная работа			
№ и наименование модуля	Лекции	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
1 Моделирование				6	Опрос на практических занятиях
технологических процессов	-	4	6	4	Выполнение и защита лабораторных работ
наноэлектроники				2	Рубежный контроль
2 Моделирование		8	6	6	Опрос на практических занятиях
наноразмерных структур	-	0	0	8	Выполнение и защита лабораторных работ
3 Методы разработки				4	Опрос на практических занятиях
базовых маршрутов и исследования элементов	-	4	4	4	Выполнение и защита лабораторных работ
на основе TCAD				6	Сдача практического здания

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля	дисциплины	практического	Объем занятий (часы)	Наименование занятия
		1	2	Введение в предмет курса. Роль приборно-технологического
1				моделирования в проектировании интегральных микросхем. Структура
				пакета TCAD Synopsys
		2	2	Моделирование технологических процессов. Ионная имплантация.
				Диффузия примесей. Моделирование процессов, включающих
				химическое взаимодействие. Процессы травления, осаждения,
		_	_	фотолитографии. Разбор конкретных ситуаций.
		3	2	Использование метода Монте-Карло. Основные программные продукты
				в составе TCAD Synopsys. Моделирование технологических процессов.
				Моделирование приборных структур методом Монте-Карло.
2		4	2	Основные задачи приборного моделирования. Базовые уравнения,
		~	2	переменные, граничные условия. Разбор конкретных ситуаций.
		5	2	Модели подвижности, рекомбинации и генерации, используемые при
				моделировании полупроводниковых приборов. Малосигнальный
		6	2	анализ. Разбор конкретных ситуаций.
		O	2	Особенности приборного моделирования наноразмерных МДП-транзисторов и гетероструктур
		7	2	Методы проведения исследований. Процессные окна. TCAD как
		,		ключевой элемент повышения технологичности в интегральной
				наноэлектронике. Виртуальное производство. Разбор конкретных
3				ситуаций.
	ŀ	8	2	Исследование наноразмерных структур с непланарным затвором.
		٥	-	Фундаментальные ограничения при моделировании наноразмерных
				структур.

4.3. Практическая подготовка при проведении лабораторных работ (часы)

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Краткое содержание
1	1	4	Расчет ВАХ наноразмерных МОП-транзисторов с учетом эффекта
			саморазогрева
2	2	4	Расчет ВАХ наноразмерных биполярных транзисторов с учетом
			эффекта саморазогрева

	3	4	Приборное моделирование транзистора с плавниковой структурой
			(FinFET)
	4	4	Исследование влияния конструктивно-технологических параметров
3			МОП-транзистора на электрические характеристики прибора с
			использованием поверхностей отклика

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	6	Подготовка к практическим занятиям
	4	Подготовка к лабораторным работам
	2	Подготовка к рубежному контролю
2	6	Подготовка к практическим занятиям
	8	Подготовка к лабораторным работам
3	4	Подготовка к практическим занятиям
	4	Подготовка к лабораторным работам
	6	Выполнение практического задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Моделирование технологических процессов и наноразмерных структур».

Модуль 1 «Моделирование технологических процессов наноэлектроники»

- ✓ Описание лабораторных работ в ОРИОКС
- ✓ Методические оказания к семинарам в ОРИОКС

Модуль 2 «Моделирование наноразмерных структур»

- ✓ Описание лабораторных работ в ОРИОКС
- ✓ Методические оказания к семинарам в ОРИОКС

Модуль 3 «Методы разработки базовых маршрутов и исследования элементов на основе TCAD»

- ✓ Описание лабораторных работ в ОРИОКС
- ✓ Методические оказания к семинарам в ОРИОКС

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

- 1. Лабораторный практикум по курсу "Моделирование в среде TCAD" . Ч. 1 : Введение в приборно-технологическое моделирование / Е.А. Артамонова [и др.]; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ); Под ред. Т.Ю. Крупкиной. М. : МИЭТ, 2009. 172 с.
- 2. Лабораторный практикум по курсу "Моделирование в среде TCAD" . Ч. 2 : Приборно-технологическое моделирование элементов интегральных схем / Е.А. Артамонова [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. Т.Ю. Крупкиной. М. : МИЭТ, 2012. 140 с.
- 3. Красюков А.Ю. Учебно-методическое пособие для самостоятельной работы студентов по дисциплине "Элементы твердотельной наноэлектроники" / А.Ю. Красюков, И.Н. Титова; М-во образования и науки РФ, МГИЭТ(ТУ). М.: МИЭТ, 2011. 124 с.
- 4. Методические указания по выполнению курсового проекта по курсу "Маршруты БИС" / А.Г. Балашов [и др.]; М-во образования и науки РФ, МГИЭТ(ТУ); Под ред. Т.Ю. Крупкиной. М.: МИЭТ, 2010. 48 с.
- 5. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 1: Технологические процессы изготовления кремниевых интегральных схем и их моделирование / М.А. Королев, Т.Ю. Крупкина, М.А. Ревелева; Под ред. Ю.А. Чаплыгина. 3-е изд., электронное. М. : Бином. Лаборатория знаний, 2015. 400 с. URL: https://e.lanbook.com/book/66309 (дата обращения: 09.12.2020). ISBN 978-5-9963-2904-5
- 6. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 2: Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования / М.А. Королев, [и др.]; Под ред. Ю.А. Чаплыгина. М.: Бином. Лаборатория знаний, 2009. 422 с.

Периодические издания

- 1. RUSSIAN MICROELECTRONICS. : Springer, [2000] . URL: http://link.springer.com/journal/11180 (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 2. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 .
- 3. IEEE TRANSACTIONS ON ELECTRON DEVICES. USA : IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=16 (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2019). Режим доступа: для зарегистрир. пользователей
- 2. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. –URL: www.scopus.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС http://orioks.miet.ru.

В ходе реализации обучения используются **смешанное обучение**, основанное на интеграции технологий традиционного и электронного обучения. Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя. Информационно-коммуникативные технологии с использованием сети Интернет применяются для консультирования студентов, в том числе с использованием сервисов Zoom.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное	Операционная
	оборудование	система Microsoft
		Windows от 7 версии и
		выше, Microsoft Office
		Professional Plus
Компьютерный класс для	Рабочие станции	Операционная система
лабораторных работ и		Linux, программное
самостоятельной работы		обеспечение Synopsys
Помещение для	Компьютерная техника с	Операционная
самостоятельной работы	возможностью подключения	система Microsoft
	к сети «Интернет» и	Windows от 7 версии и
	обеспечением доступа в	выше, Microsoft Office
	электронную	Professional Plus или Open
	информационно-	Office, браузер (Firefox,
	образовательную среду	Google Crome);
	МИЭТ	Acrobat reader DC

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

1. ФОС по подкомпетенции ПК-2.МТПНРС: "Способен исследовать характеристики элементов интегральной наноэлектроники с помощью средств приборнотехнологического моделирования"

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Посещение практических занятий, выполнение и защита лабораторных работ обязательны. Для семинаров студенты готовят доклады на заданные темы. Во время семинаров несколько студентов по очереди докладывают подготовленное задание (при необходимости с использованием компьютера и проектора). Каждый доклад обсуждается как с преподавателем, так и между студентами группы в форме дискуссии.

На лабораторных работах студенты индивидуально или в мини-группах выполняют лабораторные работы с использованием средств приборно-технологического моделирования в компьютерной аудитории. Оформляется отчет на мини-группу.

Во время самостоятельной работы студенты готовят материалы для доклада, готовятся к выполнению и защите лабораторных работ, выполняют практическое задание на расчет электрических характеристик наноразмерных КМОП- и биполярных структур.

В ходе изучения дисциплины нужно выполнить задание на проверку элементов компетенции, размещенное в ОРИОКС.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение и защита лабораторных работ, работа на практических занятиях, рубежный контроль (до 90 баллов), выполнение практического задания (до 10 баллов). По сумме баллов оценивается успеваемость студентов по дисциплине: если сумма баллов по результатам прохождения всех контрольных мероприятий составляет 50 баллов и выше, ставится зачет. Структура и график контрольных мероприятий доступен в ОРЙОКС http://orioks.miet.ru/).

1	PA	2	DA	F	O	ΓU	TI	T	
	A	. 5	PA	D	•	1 4	LV	I K	•

Доцент, к.т.н., доцент	The	/ А.Ю. Красюков /
	V //	

Рабочая программа дисциплины «Моделирование технологических процессов и
наноразмерных структур» по направлению подготовки 11.04.04 «Электроника и
наноэлектроника», направленности (профилю) «Проектирование и технология устройств
интегральной наноэлектроники» разработаны на кафедре ИЭМС и утверждены на
заседании кафедры <u>26.11</u> 202 <u>0</u> года, протокол № <u>5</u>
заседании кафедры <u>26.11</u> 202 года, протокол № <u>5</u> Заведующий кафедрой <u>Бърг</u> / Ю.А. Чаплыгин /
ЛИСТ СОГЛАСОВАНИЯ
Рабочая программа согласована с Центром подготовки к аккредитации и
независимой оценки качества
Начальник АНОК/ И.М. Никулина /
Рабочая программа согласована с библиотекой МИЭТ
skeel-
Лиректор библиотеки Укий /Т.П. Филиппова /