Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александруминистерство науки и высшего образования Российской Федерации

Должность: Ректор Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 16:07:22

«Назимональный меслеловательский университет

«Национальный исследовательский университет Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736**dМожковокий** дирститут электронной техники»

УТВЕРЖДАЮ

Проректор ис учебной работе

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Функциональные тонкие пленки и наноструктуры в сенсорике»

Направление подготовки - 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) - «Материалы и технологии функциональной электроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих профессиональных компетенций:

Компетенция ПК-3 «Способен к организации и проведению экспериментальных исследований с применением современных средств и методов, в т.ч. при разработке технологических маршрутов» сформулирована на основе **стандартов**:

Профстандарт 40.005 «Специалист в области материаловедческого обеспечения технологического цикла производства объемных нанометаллов, сплавов, композитов на их основе и изделий из них»

Обобщенная трудовая функция 40.005 В [7] Менеджмент ресурсов

Трудовые функции 40.005 В/03.7 Рациональное расходование материалов, используемых при проведении операций контроля, измерения свойств и испытания основных, вспомогательных и расходных материалов

В/04.7 Рациональное расходование основных, вспомогательных и расходных материалов, используемых при их разработке и выборе

Профстандарт 40.058 «Инженер-технолог по производству изделий микроэлектроники»

Обобщенная трудовая функция 40.058 D[7] Разработка групповых технологических процессов и модернизация производства изделий микроэлектроники

Трудовая функция 40.058 D/02.7 Организация и проведение экспериментальных работ по отработке и внедрению новых материалов, технологических процессов и оборудования производства изделий микроэлектроники

Подкомпетенции,	Задачи			
формируемые в	профессиональной	Индикаторы достижения подкомпетенций		
дисциплине	деятельности			
ПК-3. ФТПиНвС	Разработка рабочих	Знание требований, предъявляемых к		
Способен	планов и программ	свойствам функциональных слоев сенсоров,		
обосновывать	проведения	основных ограничений и проблем применения		
требования по	научных	различных материалов в сенсорах и тенденций		
использованию и	исследований и	в разработке их решений;		
расходу	технических	Умение использовать знания имеющихся		
материалов при	разработок,	технических решений для разработки новых		
разработке	подготовка	идей по внедрению наноматериалов при		
элементов	отдельных заданий	разработке элементов сенсорных систем		
сенсорных систем	для исполнителей	Опыт деятельности:		
		Выбор и рациональный расход основных и		
		вспомогательных материалов при разработке и		
		планировании производства изделий		
		сенсорики		

Компетенция ПК-4 «Способен делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по

совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения» сформулирована на основе **стандартов**:

Профстандарт 40.058 "Инженер-технолог по производству изделий микроэлектроники"

Обобщенная трудовая функция 40/058 D [7] Разработка групповых технологических процессов и модернизация производства изделий микроэлектроники

Трудовая функция 40.058D/03.7 Разработка и адаптация групповых технологических процессов производства изделий микроэлектроники

Профстандарт 40.006. Инженер-технолог в области производства наноразмерных полупроводниковых приборов и интегральных схем

Обобщенная трудовая функция 40.006 A [7] Обеспечение функционирования наноэлектронного производства в соответствии с технологической документацией. Поддержка и улучшение существующих технологических процессов и необходимых режимов производства выпускаемой организацией продукции

Трудовая функция 40.006 A/04.7 Разработка предложений по модернизации

технологического процесса

Подкомпетенции,	Задачи	Индикаторы достижения	
формируемые в	профессиональной	подкомпетенций	
дисциплине	деятельности	подкомпетенции	
ПК-4. ФТПиНвС	- сбор, обработка, анализ	Знание основных физических явлений	
Способен делать	и систематизация	и закономерностей, на которых	
научно-	научно-технической	основаны принципы работы элементов	
обоснованные	информации по теме	сенсорных систем	
выводы по	исследования, выбор	Умение выявлять зависимости	
результатам	методик и средств	экспериментальных данных от	
теоретических и	решения задачи;	изменяемых параметров	
экспериментальных		Умение устанавливать основные	
исследований,		характеристики сенсоров на основе	
формулировать на		результатов экспериментов	
их основе		Опыт деятельности:	
рекомендации по		Выбор оптимальных материалов и	
разработке и		технологий для создания сенсора на	
модернизации		основе имеющихся данных	
технологических		составление рекомендаций при	
процессов		разработке и модернизации	
производства		технологического маршрута создания	
сенсоров		изделия	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине:

Изучение данной дисциплины базируется на знаниях, приобретенных студентами при изучении дисциплин «Актуальные проблемы современной электроники и наноэлектроники» и «Основы технологии интегральных электронных приборов на гибких подложках».

Должен знать: основные технологические процессы электроники, основные понятия в области разработки методов синтеза и исследования поверхности, состава и свойств материалов для сенсорики, перспективы и преимущества применения наноматериалов в электронных устройствах.

Уметь: выявлять проблемы и варианты их решения при использовании нанообъектов

Иметь практические навыки: составления аннотаций по результатам поиска информации из документальных источников и исследовательской литературы; оценивать свои ресурсы и их пределы (личностные, ситуативные, временные), оптимально их использовать для успешного выполнения порученного задания

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	Контактная работа		овой				
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	В том числе - Практическая подготовка при выполнении курсо работы (проекта)	Промежуточная аттестация
1	2	4	144	4	12	48	80	36	ЗаО, КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			н	75		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	В том числе - Практическая подготовка при выполнении курсовой работы (проекта)	Формы текущего контроля	
1.						Контрольная работа	
Основополага		0	20	24		Защита результата	
ющие	1				10	выполнения	
принципы					10	индивидуальных заданий	
работы						(представление докладов)	
сенсоров						опрос	
2. Основные	2	0	16	24	10	опрос	

	Контактная работа			В	19		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	В том числе - Практическая подготовка при выполнении курсовой работы (проекта)	Формы текущего контроля	
представления						Защита результата	
о тонких						выполнения	
пленках и						индивидуальных заданий	
наноструктура х						(представление докладов)	
A						Контрольная работа	
3. Примеры						Защиты лабораторных	
реализации	1	12	12	32	16	работ	
наносенсоров						Защита курсового проекта	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1	1	Основные понятия наносенсорики. Основные виды датчиков
			(температурные, оптические, давления, влажности, газовые, магнитные),
			классификация сенсоров по принципу действия, основные физические
			явления, используемые в сенсорах. Основные виды наноструктур.
3	2	1	Примеры коммерциализированных применений наноструктур в
			сенсорных системах. Разъяснение задания по курсовому проекту.
2	3	2	Классификация методов создания наноструктур. Классификация методов
			получения тонких пленок.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия				
1	1	4	Принципы действия сенсоров. Классификация сенсоров.				
	2	4	Виды сенсоров. Оптические сенсоры: люминесцентные сенсоры.				
	3	4	Виды сенсоров. Оптические сенсоры, основанные на явлении поверхностного плазмонного резонанса. Акустические сенсоры на поверхностных акустических волнах.				
	4	4	Виды сенсоров. Вибрационные сенсоры. Вольтаические сенсоры: датчики Холла.				
	5	4	Контрольная работа по модулю 1. Опрос 1.				

3	6	4	Семинар – дискуссия: примеры применения сенсоров на основе					
3			углеродных материалов, тонкопленочной керамики и др.					
	7	4	Методы создания тонких пленок и наноструктур. Классификация и					
			описание методов, вредные факторы при производстве наноматериалов и					
			меры по обеспечению промышленной безопасности.					
	8	4	Определение геометрических параметров тонких пленок и наноструктур,					
2			получаемых газовыми методами.					
2	9	4	Определение геометрических параметров пленок металлов, получаемых					
		электрохимическим осаждением. Определение геометрическ параметров анодных оксидов в зависимости от технологическ						
	параметров анодного окисления.							
	10	4	Контрольная работа по модулю 2. Опрос по модулю 2.					
3	11	8	Защиты курсовых проектов.					

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
3	1	8	Определение влажности с помощью влагочувствительных структур на
			основе пористого оксида алюминия
3	2	4	Исследование фотоЭДС массивов нанокристаллов A ^{II} B ^{VI}

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС				
1-2	6	Самостоятельная доработка конспекта лекции с применением учебного				
		пособия и дополнительной литературы				
1-3	6	Подготовка к практическим занятиям: выполнение домашних заданий на				
		решение задач и иных упражнений по теме семинара				
1-2	6	Подготовка к опросу.				
1-2	6	Подготовка к контрольным работам.				
3	6	Подготовка к лабораторным работам.				
1-2	8	Выполнение индивидуальных заданий и подготовка докладов				
1-3	36	Практическая подготовка при выполнении курсовой работы				
		(проекта)				
		Выполнение курсового проекта и подготовка к его защите.				
1-3	6	Подготовка к зачету с оценкой				

4.5. Примерная тематика курсовых работ (проектов)

Разработать методику (технологию) изготовления наноструктуры или тонкой пленки для использования в качестве чувствительного слоя в соответствии с техническим заданием

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Все материалы для подготовки к практическим занятиям и выполнению БДЗ представлены в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/). Разъяснения по выполнению каждого из видов СРС даны в Методических указаниях студентам при выполнении КП.

Модуль 1 «Основополагающие принципы работы сенсоров»

✓ Материалы для изучения теории в рамках самостоятельной доработки конспекта лекции, подготовки докладов, подготовки к практическим занятиям, к контрольной работе и к опросу, к КП.

Модуль 2 «Основные представления о тонких пленках и наноструктурах»

✓ Материалы для изучения теории в рамках самостоятельной доработки конспекта лекции, подготовки докладов, подготовки к практическим занятиям, к контрольной работе и к опросу, к КП.

Модуль 3 «Примеры реализации наносенсоров»

✓ Материалы для подготовки к практическим занятиям, к лабораторным работам, к защите КП.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Интеллектуальные сенсоры / И.Д. Войтович, В.М. Корсунский. 2-е изд. М. : ИНТУИТ.РУ, 2016. 1164 с. URL: https://e.lanbook.com/book/100608 (дата обращения: 27.09.2020).
- 2. Advances in Nanomaterials / Husain M., Khan Zishan Husain. : Springer, 2016. (Advanced Structured Materials. Volume 79). URL : https://link.springer.com/book/10.1007/978-81-322-2668-0 (дата обращения: 27.09.2020).
- 3. Handbook of Modern Sensors: Physics, Designs, and Applications / J. Fraden. : Springer, 2010. URL: http://link.springer.com/book/10.1007/978-1-4419-6466-3 27.09.2020.
- 4. Экономика предприятия: теория и практика: Учеб. пособие для бакалавров / Н.Ф. Мормуль; Под ред. Ю.П. Анискина. 2-е изд., стер. М.: Омега-Л, 2015. 180 с.
- 5. Applications of Nanomaterials in Sensors and Diagnostics / Adisorn Tuantranont, ed. : Springer, 2013. (Volume 14. Springer Series on Chemical Sensors and Biosensors). URL : http://link.springer.com/book/10.1007/978-3-642-36025-1 (дата обращения: 27.09.2020)
- 6. Интеллектуальные сенсорные системы / Под ред. Дж.К.М. Мейджера; Пер. с англ. Ю.А. Платонова, под ред. В.А. Шубарева. М. : Техносфера, 2011. 464 с.
- 7. Введение в процессы интегральных микро- и нанотехнологий : В 2-х т. : [Учеб. пособие для вузов]. Т. 2 : Технологические аспекты / М.В. Акуленок, В.М. Андреев, Д.Г. Громов [и др.]; Под общ. ред. Ю.Н. Коркишко. М. : БИНОМ. Лаборатория знаний, 2011. 256 с
- 8. Функциональные наноматериалы : Учеб. пособие / А.А. Елисеев, А.В. Лукашин; Под ред. Ю.Д. Третьякова. М. : Физматлит, 2010. 456 с

9. Производственный менеджмент : Учебник / Р.А. Фатхутдинов. - 5-е изд. - СПб. : Питер, 2006. - 496 с.

Периодические издания

- 1. Journal of Sensors / Hindawi Publishing Corporation. Египед. доступ открытый. caйт. URL: http://www.hindawi.com/journals/js/contents/
- 2. Journal of applied physics / American Institute of Physics. USA : AIP, [б.г.]. На сайте представлены электронные версии статей с 1931 г. (доступ обеспечивается MIET) сайт. URL: http://scitation.aip.org

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 10.09.2020). Режим доступа: для зарегистрированных пользователей.
- 2. SCOPUS: Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.09.2020). Режим доступа: для авториз. пользователей МИЭТ
- 3. Web of Science: сайт. Компания Clarivate, 2021. URL: http://apps.webofknowledge.com (дата обращения: 29.09.2020). Режим доступа: для авторизованных пользователей МИЭТ.
- 4. Федеральный институт промышленной собственности. URL: https://new.fips.ru/about/ (дата обращения: 20.09.2020).
- 5. Electrochemical Society : [сайт]. URL: http://ecsdl.org/ (дата обращения: 20.09.2020). Режим доступа: для авториз. пользователей МИЭТ
- 6. ASC Publications : сайт. URL: http://pubs.acs.org (дата обращения: 11.09.2020). Режим доступа: для авторизованных пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (основано на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОС «Домашние задания», сервис для управления проектами в режиме онлайн https://trello.com/, электронная почта.

При этом платформу https://trello.com/ рекомендуется использовать не только для консультаций студентов с преподавателем, но и для коммуникации обучающихся по дисциплине между собой. Студентам рекомендуется своевременно загружать выполненные задания в рабочие пространства платформы на проверку преподавателем. При этом остальные студенты могут ознакомиться с результатами выполнения индивидуального задания, задать вопросы как исполнителю, так и преподавателю. Для выполнения курсовых проектов также рекомендуется создавать отдельные рабочие

пространства для каждой малой группы, чтобы участники малой группы могли обмениваться материалами курсового проекта, взаимно дополнять и корректировать друг друга, задавать вопросы и отдавать готовые элементы проекта на проверку преподавателю в дистанционном и онлайн режиме с помощью данной платформы. Таким образом, обучающиеся также получают опыт использования цифровых инструментов для управления проектами.

В процессе обучения при проведении занятий и для самостоятельной работы используются следующие внутренние электронные ресурсы: электронные презентации и конспекты лекций, видеоролики мастер-классов по выполнению расчетных заданий; контрольные тестирования в MOODLe).

Для выполнения части заданий СРС, в том числе, может быть использован внешний электронный ресурс: курс «<u>Интеллектуальные сенсоры»</u> на платформе ИНТУИТ.

На семинарах применяется модель «перевернутый класс». Учебный процесс начинается с постановки проблемного вопроса, ответы на который студент должен найти самостоятельно, используя рекомендованные литературные источники и базы данных. В аудитории проверяются и дополняются полученные знания с использованием докладов, дискуссий и обсуждений. Работа поводится по следующей схеме:

- СРС (дистанционная предаудиторная работа с использованием внешнего или внутреннего ресурса);
- аудиторная работа (семинар с представлением презентаций изученного материала, тематической дискуссии, разбор ошибок);
 - обратная связь с обсуждением и подведением итогов;
 - запись краткого отчета и выводов по семинару.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория №4136 Лаборатория микроскопии	Компьютер с ПО и возможностью подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду МИЭТ, беспроводная клавиатура + мышь, проектор	OC Windows MS Office браузер
Учебная аудитория № 4315 Лаборатория технологии наноматериалов	Вытяжные шкафы, RLC – измеритель параметров МНИПИ-E7-20, компьютер	OC Windows MS Office браузер
Учебная аудитория № 4341 Лаборатория дисперсных систем Помещение для	Двойной монохроматор ДМР-4, стенд для снятия фототока, компьютер Помещение, оснащенное компьютерной	OC Windows MS Office браузер ОС Windows

самостоятельной	техникой, с возможностью подключения к	MS Office
работы	сети «Интернет» и обеспечением доступа в	браузер
	электронную информационно-	
	образовательную среду МИЭТ	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции ПК-3.ФТПиНвС Способен обосновывать требования по использованию и расходу материалов при разработке элементов сенсорных систем.
- 2. ФОС по подкомпетенции ПК-4. ФТПиНвС Способен делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, формулировать рекомендации по разработке и модернизации технологических процессов производства сенсоров

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В рамках рассматриваемого курса предусмотрены следующие формы учебных занятий:

- *лекции*, цель которых состоит в рассмотрении теоретических вопросов дисциплины;
- *практические занятия*, цель проведения которых углубленное изучение некоторый разделов курса, а также контроль выполнения студентами внеаудиторной самостоятельной работы
- *пабораторные занятия*, цель проведения которых экспериментальное подтверждение и проверка существующих теоретических положений, формирование профессиональных компетенций, умений и навыков проведения экспериментов, обработки и анализа результатов экспериментов.
- внеаудиторная самостоятельная работа, цель которой закрепление полученных знаний, подготовка к практическим (лабораторным) занятиям, приобретение опыта самостоятельной работы с различными источниками информации, подготовка проектов (кейсов). Самостоятельная работа студентов планируется по каждой из тем лекционного курса.

В учебной программе дисциплины предусмотрено 3 модуля. Модуль 1 дает сведения об основных физических и химических явлениях и законах, на которых основывается сенсорика. Модуль 2 дает общие представления о методах и особенностях получения тонких пленок и наноструктур. Особенность модуля состоит в том, что в процессе его изучения аккумулируются знания, полученные в предыдущих курсах, о методах создания материалов с одной стороны, и о свойствах наноструктур с другой

стороны. В результате можно установить взаимосвязь — «метод получения наноструктур — свойства наноструктур». В модуле 3 рассматриваются основные примеры сенсоров на наноструктурах и тонких пленках, особенности предъявляемых к ним требований, решения и схемы их реализации. Модули 1 и 2 являются базовыми для модуля 3. Порядок Модуль 3 является заключительным, при его изучении закрепляются знания, полученные в предыдущих модулях.

Самостоятельная работа студентов направлена на проработку и закрепление лекционного материала, и предварительную подготовку к практическим занятиям: подготовка к лабораторным работам, проработка теоретического материала для семинарских занятий, подготовка докладов, решение задач и кейсов, подготовку курсового проекта. Подробные описания заданий для подготовки к практическим занятиям и методические указания к ним представлены в файлах ППЗ для каждого из модулей дисциплины.

Курсовой проект выполняется в малых группах в форме домашнего задания. Предлагается вариант сенсора, для которого следует подобрать оптимальный материал и выбрать и описать методику его изготовления. Можно выбрать один из предлагаемых сенсоров самостоятельно (из списка вариантов: в варианте указано, что регистрируется, и какой метод регистрации сигнала используется), в противном случае, преподаватель распределяет варианты по бригадам. Работу следует оформить в виде отчета (внеаудиторно), а также защитить предложенную методику формирования наноструктуры или тонкой пленки на практических занятиях (аудиторно). При этом оценивается содержание отчета и качество выступления.

Отчеты должны иметь титульный лист, список исполнителей, содержание, описание варианта, основную часть (технологический маршрут для заданной ситуации) и список использованной литературы.

В пояснительной записке по курсовому проекту (КП) должны быть представлены следующие сведения:

- 1. принцип действия датчика в соответствии с вариантом;
- 2. аналитический обзор требований и проблем, возникающих при разработке данного типа сенсоров;
- 3. обзор технических решений, касающихся выбора материала для создания чувствительных структур с заданными техническими характеристиками; сравнение представленных решений, выводы и рекомендации по конфигурации и свойствам применяемого наноматериала, на основе уже применяемых решений и на основе собственных идей;
- 4. аналитический обзор методов формирования наноструктур или тонких пленок с заданными конфигурацией и свойствами,
- 5. описание выбранного метода и обоснование данного выбора, в том числе с экономической и экологической точки зрения,
- 6. конструкция датчика,
- 7. описание технологического процесса формирования функционального слоя.

Для выполнения курсовой проект разбивается на небольшие части (преподаватель рекомендует вариант деления проекта), которые могут прорабатываться параллельно, но должны быть логически взаимосвязаны друг с другом. Студенты распределяют между собой ответственность за выполнение малых фрагментов.

На практическом занятии проводится публичная защита проектов в виде представления электронных презентаций КП. Оценка качества КП производится комиссией из преподавателей дисциплины. После представления проектов проводится их обсуждение как с преподавателями, так и с другими студентами, обучающимися по дисциплине. В ходе обсуждения проектов выявляются слабые места проектов, ошибки и неточности. Полученные замечания следует использовать для доработки содержания проектов до финального варианта

Контрольные рубежи по сдаче проектов: 8 неделя семестра - представление описания сенсора и его принципа действия, 15 неделя семестра - защита проектов в форме презентаций, 17 неделя семестра – представление полного комплекта документов по КП (презентация + текст КП).

11.2. Система контроля и оценивания

По завершению изучения дисциплины предусмотрен зачёт с оценкой, при этом оценка итогов учебной деятельности студента основана на накопительно – балльной системе. Для сдачи зачёта с оценкой по дисциплине разработаны ФОСы, включающие тестовые задания и расчётное задание по проверке сформированности подкомпетенций с методическими указаниями по их выполнению и критериями оценки.

Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

Получение минимальных баллов по всем контрольным мероприятиям в течение семестра обязательно. За Активность/Посещаемость допустимо получение 0, но не более чем по одному из мероприятий.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка	
Менее 50	2	
50 – 70	3	
71 – 85	4	
86 – 100	5	

РАЗРАБОТЧИКИ:

Доцент института ПМТ, к.т.н.

Цронов А.А.

Старший преподаватель института ПМТ

назаркина Ю.В.

Рабочая программа дисциплины «Функциональные тонкие пленки и наноструктуры в сенсорике» по направлению подготовки 11.04.04 «Электроника и наноэлектроника», направленности (профилю) «Материалы и технологии функциональной электроники» разработана в Институте перспективных материалов и технологий и утверждена на заседании Ученого совета ПМТ «30» сентября 2020 года, протокол № 39

Зам. директора Института	Mucan	_/А.В.Железнякова/		
ЛИСТ СОГЛАСОВАНИЯ				
Рабочая программа согласована оценки качества	с Центром подгото	вки к аккредитации и	независимой	
Начальник АНОК	<u></u>	_/И.М.Никулина /		
Рабочая программа согласована с	библиотекой МИЭТ			
/ Директор библиотеки	Tuze	/Т.П.Филиппова/		