Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Алексан фравичстерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ дата подписания: 01.09.2023 15:29:41 «Национальный исследовательский университет

«Национальный исследовательский университет Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f7**%df%egg8Beasgibbaseput**ут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Базовая КМОП технология»

Направление подготовки - 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) - «Проектирование и технология устройств интегральной наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-2. Способен определять цели, осуществлять постановку задач проектирования электронных приборов, схем и устройств различного функционального назначения, подготавливать технические задания на выполнение проектных работ

сформулирована на основе профессионального стандарта 40.040 «Инженер в области разработки цифровых библиотек стандартных ячеек и сложнофункциональных блоков»

Обобщенная трудовая функция D «Разработка электрических схем, характеризация сложнофункциональных блоков (С Φ -блоков)»

Трудовая функция D/01.7 «Разработка электрической принципиальной схемы СФ-блока»

Подкомпетенции,	Задачи профессиональной	Индикаторы достижения		
формируемые в	деятельности	компетенций/подкомпетенций		
дисциплине	деятельности	KOMITETEII III III III III III III III III		
ПК-2.БКМОПТ	Определение цели,	Знает: основные этапы		
Способен	постановка задач	технологических маршрутов		
разрабатывать	проектирования	формирования элементов		
базовый маршрут	электронных приборов,	КМОП-СБИС с наноразмерными		
формирования	схем и устройств	проектными нормами.		
КМОП-транзисторов	различного	Умеет: разрабатывать		
	функционального	технологические маршруты		
	назначения;	формирования основных		
	подготовка технических	элементов наноразмерных		
	заданий на выполнение	КМОП-СБИС.		
	проектных работ	Опыт деятельности: по		
		разработке маршрута		
		формирования наноразмерных		
		элементов КМОП-СБИС с		
		использованием средств		
		приборно-технологического		
		моделирования (TCAD)		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы, является элективной.

Входные требования к дисциплине: знание основных маршрутов СБИС, основ технологии интегральных схем, принципы работы МОП-транзисторов.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

				Контан	стная работа			
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Практическая подготовка при проведении лабораторных работ (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	1	2	72	-	16	16	40	3a

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конт	актная р	работа	Б		
№ и наименование модуля	Лекции	Практические занятия	Практическая подготовка при проведении лабораторных работ (часы)	Самостоятельная работа	Формы текущего контроля	
1. Пути увеличения степени интеграции СБИС	-	4	-	4	Опросы на практических занятиях	
2.0				12	Опросы на практических занятиях	
2. Ограничения уменьшения	-	12	16	16	Выполнение и защита лабораторных работ	
размеров элементов				8	Сдача практического задания	

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание						
1	1	2	Тенденции развития технологии СБИС.						
			Закон Мура и степень интеграции. Влияние степени интеграции на						
			основные параметры СБИС.						
	2	2	Пути увеличения степени интеграции.						
			Влияние площади кристалла на выход годных.						
2	3	2	Ограничения уменьшения размеров элементов.						
			Физические ограничения						
	4	2	Ограничения размеров элементов.						
			Приборные ограничения. Закон масштабирования.						
	5	2	Ограничения размеров элементов.						
			Короткоканальные эффекты						
	6	2	Ограничения размеров элементов.						
			Технологические ограничения. Понятие о ПДР.						
	7	2	Методы самосовмещения в технологии СБИС.						
			Самосовмещение с помощью твердой маски и латерального						
			травления.						
	8	2	Методы самосовмещения в технологии СБИС.						
			Самосовмещение с помощью твердой маски и латерального						
			травления.						

4.3. Практическая подготовка при проведении лабораторных работ

№ модуля лиспиплины	№ лабораторной работы	Объем занятий	Наименование работы
2	1	4	Базовый маршрут формирования КМОП-транзисторов с проектными
			нормами 90 нм
	2	4	Базовый маршрут формирования КМОП-транзисторов с проектными
			нормами 90 нм. Двумерное моделирование.
	3	4	Создание проекта базового маршрута в среде SWB
	4	4	Моделирование параметризованного базового маршрута формирования
			КМОП-транзисторов с проектными нормами 90 нм

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	14	Подготовка к опросам на практических занятиях
2	16	Подготовка к лабораторным работам
	12	Подготовка к опросам на практических занятиях
	8	Выполнение практического задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Базовая КМОП технология».

Модуль 1 «Пути увеличения степени интеграции СБИС»

✓ Методические указания к семинарам.

Модуль 2 «Ограничения уменьшения размеров элементов»

- ✓ Описание лабораторных работ 1-4.
- ✓ Методические указания к семинарам.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 1: Технологические процессы изготовления кремниевых интегральных схем и их моделирование / М.А. Королев, Т.Ю. Крупкина, М.А. Ревелева; Под ред. Ю.А. Чаплыгина. 3-е изд., электронное. М.: Бином. Лаборатория знаний, 2007. 397 с.
- 2. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 2: Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования / М.А. Королев, [и др.]; Под ред. Ю.А. Чаплыгина. М.: Бином. Лаборатория знаний, 2009. 422 с.

3. Красников Г.Я. Конструктивно-технологические особенности субмикронных МОП-транзисторов / Г.Я. Красников. - 2-е изд., испр. - М. : Техносфера, 2011. - 800 с.

Периодические издания

- 1. RUSSIAN MICROELECTRONICS. Springer, [2000] . URL: http://link.springer.com/journal/11180 (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ
- 2. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 .
- 3. IEEE Transactions on Electron Devices. USA : IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=16 (дата обращения: 14.06.2018). Режим доступа: по подписке МИЭТ

7. ПЕРЕЧЕНЬ БАЗ ДАННЫХ, ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.09.2019). Режим доступа: для зарегистрир. Пользователей
- 2. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 30.09.2019). Режим доступа: для авториз. пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС http://orioks.miet.ru, включая презентации, руководство для подготовки реферата и доступ к тестам.

В ходе реализации обучения используются **смешанное обучение**, основанное на интеграции технологий традиционного и электронного обучения. Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя. Информационно-коммуникативные технологии с использованием сети Интернет применяются для консультирования студентов, в том числе с использованием сервисов Zoom.

Дисциплина может реализовываться с использованием дистанционного обучения. При дистанционном обучении проводятся *online* практические занятия с использованием платформы Zoom, вся информация доступна для студентов через среду ОРИОКС.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное оборудование	Операционная система Microsoft Windows от версии и выше, Microsoft Offi Professional Plus
Компьютерный класс для лабораторных работ и самостоятельной работы	Рабочие станции	Операционная система Linux, программное обеспечение Synopsys
Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Crome); Acrobat reader DC

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по компетенции/подкомпетенции ПК-2.БКМОПТ Способен разрабатывать базовый маршрут формирования КМОП-транзисторов.

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины в электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Посещение практических занятий, выполнение и защита лабораторных работ обязательны. Для практических занятий студенты готовят доклады на заданные темы. Во время практических занятий проводятся опросы, студенты по очереди докладывают подготовленные доклады (при необходимости с использованием компьютера и проектора). Каждый доклад обсуждается как с преподавателем, так и между студентами группы в форме дискуссии.

На лабораторных работах студенты индивидуально или в мини-группах выполняют лабораторные работы с использованием средств приборно-технологического моделирования в компьютерной аудитории. Оформляется отчет на мини-группу.

Во время самостоятельной работы студенты готовятся к опросам на практических занятиях, к выполнению и защите лабораторных работ и выполняют практическое задание на разработку технологического маршрута создания наноразмерных КМОП-транзисторов.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (до 40 баллов) и итоговое контрольное мероприятие (до 60 баллов). По сумме баллов оценивается успеваемость студентов по дисциплине: если сумма баллов по результатам прохождения всех контрольных мероприятий, включая оценку активности в семестре, составляет 50 баллов и выше, ставится зачет. Структура и график контрольных мероприятий приведен в ОРИОКС, http://orioks.miet.ru/.

P	A	3	P	A	Б	0	T	ч	И	К:	
				∠ b	.,	•		- 4		4.4	۰

Доцент, к.т.н., доцент ______ / А.Ю. Красюков

Профессор, д.т.н. ______/ М.А. Королев

Рабочая программа дисциплины «Базовая КМОП-технология» по направлению
подготовки 11.04.04 «Электроника и наноэлектроника», направленности (профилю)
«Проектирование и технология устройств интегральной наноэлектроники» разработана
на кафедре ИЭМС и утверждена на заседании кафедры 26.11 2020 года,
протокол № 5
Заведующий кафедрой/ Ю.А. Чаплыгин /
ЛИСТ СОГЛАСОВАНИЯ
Рабочая программа согласована с Центром подготовки к аккредитации и
независимой оценки качества
Начальник АНОК/ И.М. Никулина /
Рабочая программа согласована с библиотекой МИЭТ
Директор библиотеки / Т.П. Филиппова /